

AQA A Level Biology

Topic 7

Genetics, populations,

evolution and ecosystems

Торіс	Understand	Memorise	Practise
7.1 Inheritance			
7.2 Populations			
7.3 Evolution may lead to speciation			
7.4 Populations in ecosystems			
Required practical 12			

7.1 Inheritance

What is meant by the term genotype?

Genetic constitution of an organism

What is meant by the term phenotype?

The **expression** of this **genetic constitution** (genotype) and its **interaction** with the **environment**

 Gene pair 1
 A
 A
 Homozygous dominant

 Gene pair 2
 B
 b
 Heterozygous

 Gene pair 2
 D
 d
 Homozygous recessive

5 PRACTICE

Homologous pair

What are alleles and how do they arise?

Variations of a particular gene (same locus) \rightarrow arise by mutation (changes in DNA base sequence)

How many alleles of a gene can be found in diploid organisms?

2 as diploid organisms have 2 sets of chromosomes (chromosomes are found in homologous pairs)
 But there may be many (more than 2) alleles of a single gene in a population

Describe the different types of alleles

Dominant allele	Always expressed (shown in the phenotype)
Recessive allele	Only expressed when 2 copies present (homozygous recessive) / NOT expressed when dominant allele present (heterozygous)
Codominant alleles	Both alleles expressed / contribute to phenotype (if inherited together)

What is meant by the terms homozygous and heterozygous?

Homozygous	Alleles at a specific locus (on each homologous chromosome) are the same
Heterozygous	Alleles at a specific locus (on each homologous chromosome) are different

What do monohybrid and dihybrid crosses show?

- Monohybrid cross inheritance of one phenotypic characteristic coded for by a single gene
- Dihybrid cross inheritance of two phenotypic characteristics coded for by two different genes

Worked example: monohybrid cross (basic)

The dominant allele for the grey gene	Parental phenotypes	Non-grey	Grey
(G) in horses results in a coat colour turning progressively grey .	Parental genotypes	<u>g</u> g	Gg
The recessive allele (g) results in the	Gamete genotypes	g (and g)	G and g
normal coat colour being maintained	Genetic diagram	0	e g
(non-grey phenotype).		g G	9 99
A non-grey female is crossed with a heterozygous male.		g G	g gg
	Offsp <mark>ring</mark> genotypes	Gç	9, 88
Draw a genetic diagram to show the expected ratio of phenotypes in the	Offspring phenotypes	Grey, no	on-grey
offspring.	Ratio	1	1

EXAM PAPERS PRACTICE

Worked example: monohybrid cross with multiple alleles

In one snail species, shell colour is	Parental phenotypes	Pink-shelled	Pink-shelled
controlled by a gene with 3 alleles . The shell may be brown , pink or yellow . The	Parental genotypes	C ^P C ^Y	C ^P C ^Y
allele for brown (C ^B) is dominant to the	Gamete genotypes	C^P and C^Y	C^P and C^Y
other two alleles. The allele for pink (C ^P) is dominant to the allele for yellow (C ^Y).	Genetic diagram	C ^p	CY
A cross between two pink-shelled		C ^P C ^P C	
snails produced only pink-shelled and		C ^Y C ^P C	Y CYCY
yellow-shelled snails. Use a genetic diagram to explain why.	Offspring genotypes and phenotypes	<u>C^PC^P.C^PC^Y - yellc</u>	

Worked example: monohybrid cross with codominance and multiple alleles

The inheritance of the ABO **blood groups** in humans is controlled by **three alleles** of a single gene, I^A, I^B and I^O. The alleles I^A and I^B are **codominant**, and the allele I^O is **recessive to I**^A and **recessive to I**^B.

Two **heterozygous** parents plan to have a child. One has **blood group A** and the other has **blood group B**.

Use a genetic diagram to show all the possible **genotypes** and the **ratio** of **phenotypes** expected in their offspring.

Parental phenotypes	Blood group A	Blood group B
Parental genotypes	۱ ^۵ ۱۰	l [₿] l ⁰
Gamete genotypes	I [^] and I ^o	I^{B} and I^{O}
Genetic diagram	PRACT	ICE
	IA IA	B IVIO
	I ^O I ^B	o lolo
Offspring genotypes	ا ^م ا ^م , ا ^م ا ⁰ , ا ^م ا ⁰	
Offspring phenotypes	AB, A, B, O	
Ratio	11111	

Worked example: monohybrid cross using a pedigree diagram

The figure shows the inheritance of a genetic disorder in a family. Key 2 Female without disorder Person 7 and person 8 plan to have Male without disorder another child. Determine the 8 probability that the child will be a Female with disorder male who has the disorder. Use the Male with disorder symbol H for the dominant allele 10 11 and h for the recessive allele.

In this example, we first have to use the pedigree diagram to work out whether the disorder was caused by a **dominant or recessive allele**. Since two parents without the disorder had a child with the disorder, it is caused by a **recessive allele**.

We also need to use the diagram to work out the genotypes of 7 and 8 (parents). Since 7 has the disorder, he must be **homozygous recessive**. 8 doesn't have the disorder so must have at least **one dominant allele**. Since 7 and 8 have a child with the disorder, 8 must be **heterozygous** to have passed on the recessive allele.

Parental phenotypes	With disorder	Without disorder	
Parental genotypes			
Gamete genotypes	h (and h)		
Genetic diagram		нh	
	h	Hh hh	
	h	Hh hh	
Offspring genotypes	Hh, hh		
Offspring phenotypes	With disorder, without disorder		
Probability	½ male, ½ have disorder \rightarrow ½ x ½ = <u>¼ (or 0.25) male with disorder</u>		

Explain the evidence from a pedigree diagram which would show that the allele for [named phenotype] is <u>dominant</u>

- [Named phenotype] parents [n & n] have child [n] WITHOUT [named phenotype]
- So both parents [n & n] must be heterozygous / carriers of recessive allele
 - If it were recessive, all offspring would have [named phenotype]

Explain the evidence from a pedigree diagram which would show that the allele for [named phenotype] is <u>recessive</u>

- Parents [n & n] WITHOUT [named phenotype] have child [n] WITH [named phenotype]
- So both parents [n & n] must be heterozygous / carriers of recessive allele

Worked example: dihybrid cross (basic)

Note – if the two genes are on two **different chromosomes** (the genes are **not linked**), an allele from one pair of chromosomes can enter a gamete with either allele from the other pair. This is due to **independent segregation** of homologous chromosomes during meiosis. For example, If an adult had the genotype AaBb, the possible gamete genotypes are: Ab, AB, ab and aB.

In fruit flies, the allele for grey body (G) is dominant to the allele for ebony	Parental phenotypes	Grey body, vestigial wings	Ebony body, normal wings
body (g) and the allele for normal wings (N) is dominant to the allele for	Parental genotypes	Ggnn	ggNn
vestigial wings (n). These genes are not linked.	Gamete genotypes	Gn and gn	gN and gn
Vestigial-winged flies, heterozygous	Genetic diagram	gN	gn
for grey body colour, were crossed with ebony-bodied flies, heterozygous for normal wings.	PERS	Gn GgNn gn ggNn	Ggnn ggnn
Complete the genetic diagram to show	Offspring genotypes	GgNn, Ggnn, g	gNn, ggnn
all the possible genotypes and the ratio of phenotypes expected in the offspring of this cross.	Offspring phenotypes	Grey, normal; gre ebony, normal; eb	
	Ratio	<u>1:1:1:1</u>	

Note – although in this example there are only two gamete genotypes for each parent, there could be **up to 4 if** a parent is **heterozygous for both genes.** Just add extra columns / rows to the punnett square.

Worked example: dihybrid cross with codominance

In a species of flowering plant, the **T** allele for **tallness** is **dominant** to the **t** allele for **dwarfness**. In the same species, two alleles **C**^R (**red**) and **C**^W (white) code for the colour of flowers.

When homozygous red-flowered plants were crossed with homozygous white-flowered plants, all the offspring had **pink** flowers. A **dwarf**, **pink-flowered** plant was crossed with a **heterozygous tall**, **white-flowered** plant.

Complete the genetic diagram to show all the possible **genotypes** and the **ratio** of **phenotypes** expected in the offspring of this cross.

Parental phenotypes Dwarf, Tall, pink-flowered white-flowered **Parental genotypes** ttC^RC^W TtC^wC^w tC^R and tC^W TC^w and tC^w **Gamete genotypes** Genetic diagram tCW TCW TtC^RC^W ttC^RC^W tCR ttC^wC^w tCW TtC^wC^w Offspring genotypes TtC^RC^W, ttC^RC^W, TtC^WC^W, ttC^WC^W **Offspring phenotypes** Tall pink, dwarf pink, tall white, dwarf white Ratio 1:1:1:1

RACTICE

What is a sex-linked gene?

A gene with a locus on a sex-chromosome (normally X)

Explain why males are more likely to express a recessive X-linked allele

This assumes **males** are **XY** and **females** are **XX**, as in humans. In some organisms, it is swapped. In these cases, females (XY) would be more likely to express a recessive X-linked allele.

- Females (XX) have 2 alleles \rightarrow only express recessive allele if homozygous recessive / can be carriers
- Males (XY) have 1 allele (inherited from mother) -> recessive allele always expressed

Worked example: monohybrid cross with sex-linkage

A single gene that's carried on the	Parental phenotypes	Female with hair	Male with hair
X chromosome controls the presence of hair on the skin of	Parental genotypes	X ^H X ^h	X ^H Y
cattle. Its dominant allele causes	Gamete genotypes	X^{H} and X^{h}	X^{H} and Y
hair to be present and its recessive allele causes hairlessness.	Genetic diagram	X ^H	Y
A male and a female with hair have two hairless female offspring.		X ^H X ^H X ^H	X ^H Y X ^h Y
What is the probability that their	Offspring genotypes	X ^H X ^H , X ^H X ^h ,	X ^H Y, X ^h Y
next calf born is hairless ?	Offspring phenotypes	Female with male with hair, r	
	Probability	0.25 / 25% /	<u>¼ / 1 in 4</u>

Worked example: monohybrid cross with sex-linkage and codominance

A gene on the X chromosome	Parental phenotypes	Tortoiseshell female Black male
controls fur colour in cats. The allele G codes for ginger fur and	Parental genotypes	
the allele B codes for black fur. These alleles are codominant .	Gamete genotypes	X ^G and X ^B X ^B and Y
Heterozygous females have	Genetic diagram	X ^B Y
patches of both so their phenotype		X ^G X ^G X ^B X ^G Y
is described as tortoiseshell .		X _B X _B X _B X _B A
A tortoiseshell female was crossed		
with a black male .	Offspring genotypes	$X^{G}X^{B}$, $X^{B}X^{B}$, $X^{G}Y$, $X^{B}Y$
Use a genetic diagram to show all the possible genotypes and the	Offspring phenotypes	Tortoiseshell female, black female, ginger male, black male
ratio of phenotypes expected in the offspring of this cross.	Ratio	<u>]:]:]</u>

Worked example: dihybrid cross with sex linkage

In fruit flies, a gene for **body colour** has a **dominant** allele for **grey** body (G) and a **recessive** allele for **black** body (g). A gene for **eye colour** has a **dominant** allele for red eyes (R) and a recessive allele for white eyes (r) and is located on the X chromosome.

A heterozygous grey-bodied, white-eyed female fly was crossed with a black-bodied, red-eyed male fly. Complete a genetic diagram to show all the possible genotypes and the ratio of phenotypes expected in the offspring from this cross.

Parental phenotypes	Grey-bodied, white-eyed female			bodied, ed male
Parental genotypes	GgX'X'		gg	JX ^R Y
Gamete genotypes	GX ^r and g	K	gX ^R and gY	
Genetic diagram		gX ^R	gY	
	GX ^r	GgX ^R X ^r	GgX ^r Y	
	gXr	ggX ^R X ^r	ggX'Y	
Offspring genotypes	GgX ^R X ^r , ggX ^R X ^r , GgX ^r Y and ggX ^r Y		gX'Y	
Offspring phenotypes	Grey-bodied red-eyed female, black-bodied red-eyed female, grey-bodied white-eyed male, Black-bodied white-eyed male		ale, ale,	
Ratio	<u>1:1:1:1</u>			

EXAM PAPERS PRACTICE

Capitaliti © 2024 Esam Pajiers Practice

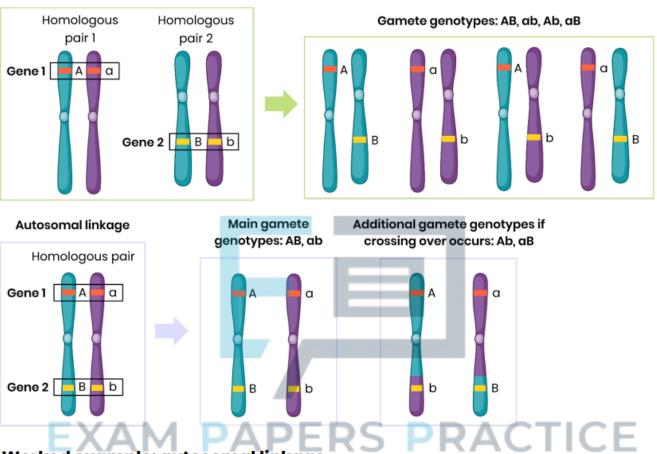
Explain the evidence from a pedigree diagram which would show that the allele for [named phenotype] on the <u>X-chromosome</u> is <u>recessive</u>

- Mother [n] WITHOUT [named phenotype] has child [n] WITH [named phenotype]
- So mother [n] must be heterozygous / carrier of recessive allele

Explain the evidence from a pedigree diagram which would suggest that [named recessive phenotype] is caused by a gene on the <u>X chromosome</u>

Only males tend to have [named recessive phenotype].

Explain the evidence from a pedigree diagram which would show that the gene for [named phenotype] is <u>not</u> on the X <u>chromosome</u>


- [Named phenotype] father [n] has daughter [n] WITHOUT [named phenotype]
- Father [n] would pass on allele for [named phenotype] on X chromosome so daughter [n] would have [named phenotype] OR
- [Named phenotype] mother [n] has son [n] WITHOUT [named phenotype]
- Mother [n] would pass on allele for [named phenotype] on X chromosome so son [n] would have [named phenotype]

Note - this assumes **males** are XY and **females** are XX, as in humans. There has been a question previously about birds where males are XX and females are XY. In this case, **swap** father for mother and son for daughter.

Explain how autosomal linkage affects inheritance of alleles

- Two genes located on same autosome (non-sex chromosome)
- So alleles on same chromosome inherited together
 - Stay together during independent segregation of homologous chromosomes during meiosis
- But crossing over between homologous chromosomes can create new combinations of alleles
 - If the genes are **closer together** on an autosome, they are **less likely** to be split by crossing over

Worked example: autosomal linkage

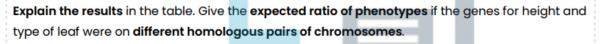
Non-linked genes

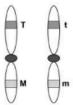
In fruit flies, the genes for body colour and for wing development are **not** on the sex chromosomes. The allele for **grey** body colour, **G**, is **dominant** to the allele for **black** body colour, **g**. The allele for **long** wings, **L**, is **dominant** to the allele for **short** wings, **I**.

A cross was carried out between flies with **grey** bodies & **long** wings (**heterozygous** for both genes) and flies with **black** bodies & **short** wings.

The result of this cross was **225** offspring with a **grey** body & **long** wings and **220** with a **black** body & **short** wings. Explain these results.

- The two genes are linked / autosomal linkage
- No crossing over occurs /
 genes are close together
- So only GL and gl gametes produced / no Gl and gL gametes produced / no Ggll and ggLl offspring produced




Worked example: autosomal linkage

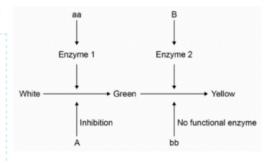
In tomato plants, the genes for height and for the type of leaf are on the **same homologous pair of chromosomes**. The allele **T**, for a **tall** plant, is **dominant** to the allele **t**, for a **dwarf** plant. The allele **M**, for **normal** leaves, is **dominant** to the allele **m**, for **mottled** leaves.

Phenotype of offspring	Number of offspring
Tall plants and normal leaves	1850
Tall plants and mottled leaves	63
Dwarf plants and normal leaves	52
Dwarf plants and mottled leaves	579

Crosses were carried out between plants **heterozygous** for both genes. The position of the two alleles for both genes was the **same** in each parent plant as shown in the diagram.

- Genes are linked (so mainly TM and tm gametes are produced)
- Crossing over has occurred
- So few Tm and tM gametes produced / fewer tall, mottled and dwarf, normal offspring produced
- If not linked (use punnett square) 9:3:3:1 (tall, normal : tall, mottled : dwarf normal : dwarf, mottled)

EXAM PAPERS PRACTICE



What is epistasis?

Interaction of (products of) non-linked genes where one masks / suppresses the expression of the other.

Worked example: dihybrid cross with epistasis

The inheritance of fruit colour in summer squash plants is controlled by two genes that are **not linked**, A and B. Each gene has two alleles. The diagram shows the **interaction** of these two genes.

Complete the genetic diagram to show all the possible genotypes and the ratio of phenotypes expected in the offspring of this cross.

Parental genotypes	aabb	AaBb
Gamete genotypes	ab (and ab)	AB, ab, aB, Ab
Genetic diagram	AB Ab	aB ab
	ab AaBb Aabb	aaBb aabb
Offspring genotypes	AaBb, Aabb,	aaBb, aabb
Offspring phenotypes	White (x2), y	ellow, green
Ratio EXAI		EK2 PF

Describe when a chi-squared (X²) test can be used

- When determining if observed results are significantly different from expected results (frequencies)
 - Eg. comparing the goodness of fit of observed phenotypic ratios with expected ratios
- Data is categorical (can be divided into groups eg. phenotypes)

Suggest why in genetic crosses, the observed phenotypic ratios obtained in the offspring are often not the same as the expected ratios

- Fusion / fertilisation of gametes is random
- Autosomal linkage / epistasis / sex-linkage
- Small sample size \rightarrow not representative of whole population
- Some genotypes may be **lethal** (cause death)

Describe how a chi-squared value can be calculated

 $\chi^2 = \sum \frac{(O-E)^2}{E}$ **o** = frequencies observed **E** = frequencies expected (multiply total n with each expected ratio as a fraction)

Describe how a chi-squared value can be analysed

- 1. Number of degrees of freedom = number of categories 1 (eg. 4 phenotypes = 3 degrees of freedom)
- 2. Determine critical value at p = 0.05 (5% probability) from a table
- 3. If X² value is [greater / less] than critical value at p < 0.05
 - Difference [is / is not] significant so [reject / accept] null hypothesis
 - So there is [less / more] than 5% probability that difference is due to chance

Exam insight: common mistakes 🗙

Mistake	Explanation
"Only genotype / genes / alleles influence phenotype."	The environment affects phenotype too. This is a key part of the phenotype definition.
Not matching offspring genotypes to their phenotypes .	Some questions require you to link each offspring's genotype to its corresponding phenotype, either by listing them in order (see examples above), or annotating the Punnett square.
Using incorrect pairs of parents when giving evidence from pedigree diagrams for alleles being dominant or recessive.	These questions come up often but students find them very challenging. Use the template answers given and practice applying them to different examples of these questions.
Omitting the sex of offspring when listing phenotypes of a cross involving sex-linkage .	Crosses involving sex-linkage are the only ones that require the sex of offspring to be specified when listing phenotypes .
Giving rote-learned ratios eg. 9:3:3:1 for every dihybrid cross.	Many factors influence the ratio of phenotypes of offspring. It's best to calculate this yourself.

7.2 Populations

What is a population?

A group of organisms of the same species in one area at one time that can interbreed

What is a gene pool?

All the alleles of all the genes in a population at any one time

What is allele frequency?

Proportion of an allele of a gene in a gene pool (decimal or percentage)

What does the Hardy-Weinberg principle state and what are the conditions under which the principle applies?

- Allele frequencies will not change from generation to generation, given:
 - Population is large
 - No immigration / emigration (to introduce / remove alleles)
 - No mutations (to create new alleles)
 - No selection for / against particular alleles
 - Mating is random

This provides a mathematical model.

What is the Hardy-Weinberg equation?

This can be used

p+q=1

simultaneously with:

- **p** = frequency of one (usually dominant) allele of the gene
- q = frequency of the other (usually recessive) allele of the gene
- **p**² = frequency of **homozygous** (usually **dominant**) **genotype**
- q² = frequency of homozygous (usually recessive) genotype

Note - if alleles are codominant, either can be assigned p and q.

Worked example: using the Hardy-Weinberg equation (basic)

	the second se	
The gene for the Rhesus blood group has two alleles. The allele	Find q ²	q ² = 16% = 0.16
for Rhesus positive, R, is dominant to that for Rhesus negative, r .	Find q	q = √0.16 = 0.4
16% of the population of Europe is Rhesus negative . Use the Hardy-Weinberg equation to calculate the percentage of this	Find p	p = 1 - 0.4 = 0.6
population that you would expect to be heterozygous for the	Find 2pq	2 x 0.4 x 0.6 = 0.48
Rhesus gene.	Convert	48%

Worked example: using the Hardy-Weinberg equation with codominance

In one species of flowering plant, two alleles C^R (red) and C^w (white) code for flower colour. When both are present, flowers are pink.

A population contained 9% red-flowered plants. Use the Hardy-Weinberg equation to calculate the percentage of pink-flowered plants in this population.

Find q ²	q ² = 9% = 0.09	ICE
Find q	q = √0.09 = 0.3	
Find p	p = 1 - 0.3 = 0.7	
Find 2pq	2 x 0.3 x 0.7 = 0.42	
Convert	<u>42%</u>	

Worked example: using the Hardy-Weinberg equation (more challenging)

In fruit flies, a gene for body colour has a dominant allele G (grey) for and a recessive allele g (black).

A population contained 64% grey-bodied flies. Use the Hardy-Weinberg equation to calculate the percentage of flies heterozygous for this gene.

Find q ²	p^2 + 2pq = 64% = 0.64 so q^2 = 1 - 0.64 = 0.36
Find q	q = √0.36 = 0.6
Find p	p = 1 - 0.6 = 0.4
Find 2pq	2 x 0.6 x 0.4 = 0.48
Convert	<u>48%</u>

- 2pq = frequency of heterozygous genotype
- •

Exam insight: common mistakes 🗙

Mistake	Explanation
"A gene pool is all the genes in a population."	It is all of the alleles of all the genes in a population.
"A gene pool is all the alleles in a species ."	It is all of the alleles of all the genes in a population .
Using 'pq' to calculate the frequency of the heterozygous genotype .	The heterozygous phenotype is '2pq'. This represents both ways the two different alleles can be combined (eg. Aa and aA), effectively doubling the probability.
Not being able to apply the Hardy-Weinberg formula when alleles are codominant .	If alleles are codominant, either can be assigned p and q. The formula can be applied in the same way.
Not converting percentages to decimals for Hardy-Weinberg calculations.	Convert percentage allele frequencies to decimals by dividing by 100 before using them in the formula.
Confusing allele frequency with homozygous genotype frequency.	Allele frequencies ' p ' and ' q ' represent the proportion of each allele in the population, while ' p ² ' and ' q ² ' indicate the proportion of individuals with homozygous genotypes (dominant and recessive, respectively).

7.3 Evolution may lead to speciation E

Explain why individuals within a population of a species may show a wide range of variation in phenotype

- Genetic factors
 - Mutations = primary source of genetic variation
 - Crossing over between homologous chromosomes during meiosis
 - Independent segregation of homologous chromosomes during meiosis
 - Random fertilisation of gametes during sexual reproduction
- Environmental factors (depends on context eg. food availability, light intensity)

What is evolution?

Change in allele frequency over time / many generations in a population

- Occurring through the process of **natural selection**

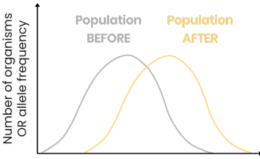
Describe factors that may drive natural selection

- Predation, disease and competition for the means of survival
- These result in differential survival and reproduction, ie. natural selection

Explain the principles of natural selection in the evolution of populations


1. <u>M</u> utations	Random gene mutations can result in [named] new alleles of a gene		
2. <u>A</u> dvantage	Due to [named] selection pressure , the new allele might benefit its possessor [explain why] → organism has a selective advantage		
3. <u>R</u> eproductive success	Possessors are more likely to survive and have increased reproductive success		
4. <u>I</u> nheritance	Advantageous allele is inherited by members of the next generation (offspring)		
5. <u>Allele frequency</u>	Over many generations , [named] allele increases in frequency in the gene pool		

Explain the effects of stabilising selection


- Organisms with alleles coding for average / modal variations of a trait have a selective advantage (eg. babies with an average weight)
- So frequency of alleles coding for average variations of a trait increase and those coding for extreme variations of a trait decrease
- So range / standard deviation is reduced

Explain the effects of directional selection

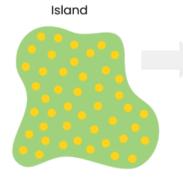
- Organisms with alleles coding for one extreme variation of a trait have a selective advantage (eg. bacteria with high resistance to an antibiotic)
- So **frequency of alleles** coding for this **extreme** variation of the trait **increase** and those coding for the other **extreme** variation of the trait **decrease**

Trait eg. human birth weight

Trait eg. level of antibiotic resistance

Explain the effects of disruptive selection

- Organisms with alleles coding for **either extreme variation** of a trait have a **selective advantage**
- So frequency of alleles coding for both extreme variations of the trait increase and those coding for the average variation of the trait decrease
- This can lead to speciation


ГІСІ

Describe speciation (how new species arise from existing species)

- 1. Reproductive separation of two populations (of the same species)
- 2. This can result in accumulation of differences in their gene pools
- 3. New species arise when these genetic differences lead to an inability of members of the populations to **interbreed** and produce **fertile offspring**

Describe allopatric speciation

- 1. Population is split due to geographical isolation (eg. new river formed)
- 2. This leads to **reproductive isolation**, separating **gene pools** by preventing **interbreeding / gene flow** between populations
- 3. Random mutations cause genetic variation within each population
- 4. Different selection pressures / environments act on each population
- 5. So different advantageous alleles are selected for / passed on in each population
- 6. So allele frequencies within each gene pool change over many generations
- 7. Eventually different populations cannot interbreed to produce fertile offspring

Population of organisms (of the same species)

New river forms

Geographical isolation → reproductive isolation

Allele frequencies change \rightarrow 2 different species

Describe sympatric speciation

- 1. Population is not geographically isolated
- Mutations lead to reproductive isolation, separating gene pools by preventing interbreeding / gene flow within one population, eg.
 - Gamete incompatibility
 - Different breeding seasons (eg. different flowering times)
 - Different courtship behaviour preventing mating
 - Body shape / size changes preventing mating
- 3. Different selection pressures act on each population
- 4. So different advantageous alleles are selected for / passed on in each population
- 5. So allele frequencies within each gene pool change over many generations
- 6. Eventually different populations cannot interbreed to produce fertile offspring

Explain genetic drift and its importance in small populations

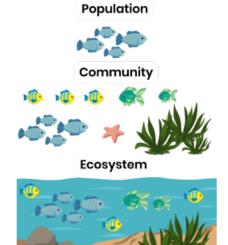
- Genetic drift = a mechanism of evolution in which allele frequencies in a population change over generations due to chance
- As some alleles are passed onto offspring more / less often by chance
 - Regardless of selection pressures and whether alleles give a selective advantage
- So strongest effects in small populations as gene pool is small and chance has a greater influence
 - Eg. when a population is sharply reduced in size (bottleneck effect)
 - Eg. when a small, new colony forms from a main population (founder effect)
- This can reduce genetic diversity some alleles can become fixed or lost entirely

Exam insight: common mistakes 🗙

Mistake	Explanation	
"Speciation and natural selection are causes of genetic variation."	Speciation and natural selection act on / require existing genetic variation, but don't cause genetic variation.	
"If I repeat the generic answer about natural selection, I'll get full marks."	Exam questions are almost always application based. Use information provided to link your answer to the question.	
Forgetting to mention mutations in an answer about natural selection.	Mutations result in new alleles of genes, enabling natural selection to occur. This mark is commonly missed.	
"Selection pressures eg. exposure to antibiotics cause mutations."	Mutations happen continuously and randomly.	
"Reproductive isolation occurs at the end of allopatric speciation."	Geographical isolation leads to reproductive isolation . This then allows differences in gene pools to accumulate.	
"Organisms adapt to their environments."	Whole populations adapt to their environment over many generations , not the organisms themselves. Organisms that happen to be better adapted are more likely to survive and reproduce .	

7.4 Populations in ecosystems TICE

What is a community?


All the **populations** of **different species** living in the same **place** (habitat) at the same **time**.

What is an ecosystem?

A **community** and the **non-living (abiotic)** components of its environment.

Ecosystems can range in size from **very small** to **very large**. They are **dynamic** systems (populations rise / fall over time).

What is a niche?

- The specific role of a species within its habitat, eg. what it eats, where and when it feeds
- Governed by its **adaptation** to both **abiotic** (non-living) and **biotic** (living) conditions

Explain the advantage of species occupying different niches

- Less competition for food / resources
- If two species tried to occupy the same niche, one would outcompete the other

What is carrying capacity?

The maximum (stable) population size of a species that an ecosystem can support.

List the factors that influence carrying capacity

Abiotic factors	Eg. light intensity, temperature, soil pH & mineral content, humidity
Interactions	a. Interspecific competition - between organisms of different species
between	b. Intraspecific competition - between organisms of the same species
organisms	c. Predation (predators kill and eat other animals, called prey)

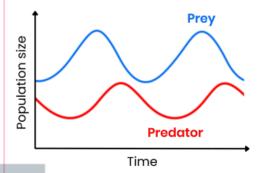
Explain how abiotic factors may affect population size / carrying capacity

- Eg. increasing light intensity increases rate of photosynthesis in plants
 - This increases carrying capacity of a variety of plant species
 - So increases the number and variety of habitats, niches and food sources for animals
 - So increasing carrying capacity of a variety of animal species

Explain how interspecific competition may affect population size

- Reduces [named resource] available to both species, limiting their chances of survival & reproduction
 - So reduces population size of both species
- If one species is better adapted, it will outcompete the other
 - So population size of less well adapted species declines, potentially leading to extinction

Explain how intraspecific competition may affect population size


- 1. As population size increases, resource availability per organism decreases, so competition increases
 - So chances of survival & reproduction decrease \rightarrow population size decreases
- 2. As population size decreases, resource availability per organism increases, so competition decreases
 - So chances of survival & reproduction increase \rightarrow population size increases

Explain the changes which occur in populations of predators & prey

Populations fluctuate in cycles, the predator population peaking after the prey (lag time):

- Prey population increases so predators have more food
 So more predators survive & reproduce
- 2. Predator population increases so more prey killed & eaten
 - So less prey survive & reproduce
- 3. Prey population decreases so predators have less food
 - So less predators survive & reproduce
- 4. Predator population decreases so less prey killed & eaten
 - So more prey survive & reproduce (cycle repeats)

Describe how the size of a population of slow-moving or non-motile organisms can be estimated

- 1. Divide area into a grid / squares eg. place 2 tape measures at right angles
- 2. Generate a pair of coordinates using a random number generator (eg. on a calculator)
- 3. Place a quadrat here and count number / frequency of [named species]
- 4. Repeat a large number of times (10 or more) and calculate a mean per quadrat
- 5. Population size = (total area of habitat / quadrat area) x mean per quadrat

Describe how the mark-release-recapture method can be used to estimate the size of a population of motile organisms

- Capture sample of species, mark and release
- Ensure marking is not harmful / does not affect survival
- Allow time for organisms to randomly distribute before collecting second sample
- Population = (number in sample 1 x number in sample 2) / number marked in sample 2

Note - marking doesn't have to be physical. It could be recording the base sequence, for example. Recapturing an organism with an identical base sequence would show the organism has been caught ('marked') before.

Explain how the mark release recapture equation can be derived

This is for your **understanding** only. Assuming the **proportion** of **marked individuals** in the **second sample** reflects the **proportion** of the **entire first sample** in the **population**, the following formula can be derived:

Number (marked) in sample 1	_	Number marked in sample 2	This just needs to be rearranged to
Total population size	. – .	Total number in sample 2	get the formula for population size.

Worked example: mark-release-recapture

A student collected 17 lizards and marked them before releasing	(17 x 20)/10 = <u>34</u>
them back into the same area. Later, she collected 20 lizards, 10 of	
which were marked. Calculate the number of lizards in this area.	

What assumptions does the mark-release-recapture method make?

- 1. Sufficient time for marked individuals to mix / distribute evenly within the population
- 2. Marking not removed and doesn't affect chances of survival / predation
- 3. Limited / no immigration / emigration
- 4. No / few births / deaths / breeding / change in population size (or birth & death rate are equal)

Suggest why the mark-release-recapture method can produce unreliable results in very large areas

• Unlikely that organisms will **distribute randomly / evenly**

- Less chance of **recapturing** organisms (that were marked initially)

Describe and explain how primary succession occurs

Succession = change in a community over time due to change in abiotic factors / species

- 1. Colonisation by pioneer species (first to colonise)
- 2. Pioneer species (and other species at each stage in succession) change abiotic conditions
 - Eg. they die and decompose, forming soil which retains water (humus / organic matter)
- 3. So environment becomes less hostile / more suitable for other species with different adaptations AND less suitable for previous species, so better adapted species outcompete previous species
- 4. As succession goes on, biodiversity increases
- 5. Climax community reached final stable community (no further succession)

Describe features of a climax community

- Same species present / stable community over a long time
- Abiotic factors (fairly) constant over time
- Populations (fairly) stable (around carrying capacity)

Explain how conservation of habitats involves management of succession

- Further succession can be prevented to stop a climax community forming
 By removing or preventing growth of species associated with later stages eg. by allowing grazing
 - This **preserves** an ecosystem at a certain point / in its current stage of succession (plagioclimax)
- So early species are not outcompeted by later species and habitats / niches are not lost

Describe the conflict between human needs and conservation as well as the importance of managing this

- Human demand for natural resources (eg. timber) is leading to habitat destruction / biodiversity loss
- Conservation is needed to protect habitats / niches / species / biodiversity
- Management of this conflict maintains the sustainability of natural resources
 - Meeting current needs without compromising the ability of future generations to meet theirs

Students should be able to **evaluate evidence** and **data** concerning **issues** relating to the **conservation** of species and habitats and consider **conflicting evidence**.

Exam insight: common mistakes 🗙

Mistake	Explanation
"Climate is an abiotic factor."	Give a specific example eg. light intensity or temperature.
"Quadrats are randomly placed."	This is true, but you need to describe a method for this. Random coordinates can be generated using a random number generator . You also need to specify that a large number of quadrats are used.
Describing how to calculate the mean number of organisms per quadrat , instead of the total population size.	Many students suggest 'scaling up' from the mean number without giving any detail on how this would be achieved. Population size = (total area of habitat / quadrat area) x mean per quadrat
Not mentioning allowing sufficient time for organisms to disperse in the mark-release-recapture method.	Sufficient time allows organisms to naturally redistribute within the area being sampled, ensuring a representative second sample for accurate population estimates.
Giving the incorrect equation for mark-release-recapture.	The best way to learn the equation is by understanding how it is derived. This is explained in the notes above.
Mixing up speciation and succession.	Succession is the change in a community over time, whereas speciation is how new species arise from existing species.
Not referring to an increase in biodiversity during succession.	As succession progresses, biodiversity tends to increase as the variety of species present increases.

Required practical 12

Investigation into the effect of a named environmental factor on the distribution of a given species.

Describe how you could investigate the effect of an environmental factor on the distribution of a species in a habitat (random sampling in two areas)

- 1. Divide two areas into grids / squares eg. place 2 tape measures at right angles
- 2. Generate a pair of coordinates using a random number generator (eg. on a calculator)
- 3. Place a quadrat here and count number / frequency of [named species]
 - Standardise this eg. only count it if it is more than half in the quadrat
- 4. Repeat a large number of times (10 or more) and calculate a mean per quadrat for both areas
- 5. Measure environmental factor in each area eg. take soil moisture readings with a soil moisture meter

Common questions:

Suggest why percentage cover may be used rather than frequency.	• Too difficult to count individual organisms / individual organisms are too small to count
Explain why random sampling is used.	To avoid sampling bias
Explain the importance of a large sample size.	 Minimises the effect of anomalies Ensures sample is representative of the population
Describe how you could decide the number of quadrats that should be used in order to collect representative data.	 Calculate a running mean When enough quadrats, this shows little change Enough to carry out a statistical test

Describe how you could investigate the effect of a factor on the distribution of a species in a habitat (systematic sampling)

- 1. Place a transect line (tape measure) across an area with an environmental gradient eg. tree to full sun
- 2. Place **quadrats** at **regular intervals** eg. Im (until end of transect) and record the **number** of organisms of [named species] and [named **environmental factor**] eg. light intensity using a light meter
- 3. Repeat in other parallel areas and calculate mean number of plants at each point along the transect

Common questions: M PAPERS PRACTICE

Explain the limitations of using systematic sampling to estimate the population of a species in a field.	 Not appropriate unless there is an environmental gradient Transects run in one direction, but to cover the entire field, they would need placing in multiple directions
Which statistical test should be used to determine the relationship between abundance and an environmental factor?	Correlation coefficient eg. Spearman's rank