

The Periodic Table

These practice questions can be used by students and teachers and is suitable for GCSE AQA Chemistry topic Questions 8462

Level: GCSE AQA Chemistry 8462

Subject: Chemistry

Exam board: GCSE AQA

Topic: The Periodic Table

Q1.

The halogens are elements in Group 7.

(a) Bromine is in Group 7.

Give the number of electrons in the outer shell of a bromine atom.

(1)

(b) Bromine reacts with hydrogen. The gas hydrogen bromide is produced.

What is the structure of hydrogen bromide?

Tick **one** box.

Giant covalent	
Ionic lattice	
Metallic structure	
Small molecule	

(1)

(c) What is the formula for fluorine gas?

Tick **one** box.

(1)

A student mixes solutions of halogens with solutions of their salts.

The table below shows the student's observations.

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Potassium chloride (colourless)Potassium bromide (colourless)Potassium iodide (colourless)Chlorine (colourless)Solution turns orangeSolution turns brownBromine (orange)No changeSolution turns brownIodine (brown)No changeNo change			
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

(d) Explain how the reactivity of the halogens changes going down Group 7.

Use the results in the table above.

(3)

A company uses chlorine to produce titanium chloride from titanium dioxide.

(e) What is the relative formula mass (M_r) of titanium dioxide, TiO₂?

```
Relative atomic masses (A_r): O = 16 Ti = 48
```

Tick **one** box.

•

80	
128	
768	

(1)

(f) The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.

However, the company finds that 500 g of titanium dioxide only produces 900 g of titanium chloride.

Calculate the percenta	age yield.	
	Percentage yield =	%
		(Total 9 mar
question is about elem	ents in Group 1.	
acher burns sodium in c	xygen.	
Complete the word eq	uation for the reaction.	
sodium	+ oxygen →	

What is the name of this type of reaction? (b)

Tick **one** box.

Q2.

Decomposition	
Electrolysis	
Oxidation	
Precipitation	

(c) The teacher dissolves the product of the reaction in water and adds universal indicator.

The universal indicator turns purple.

What is the pH value of the solution?

Tick **one** box.

(d) The solution contains a substance with the formula NaOH

Give the name of the substance.

(e) All alkalis contain the same ion.

What is the formula of this ion?

Tick **one** box.

(1)

(1)

(1)

(f) A solution of NaOH had a concentration of 40 g/dm³

What mass of NaOH would there be in 250 cm³ of the solution?

Mass -	a
IVIA55 =	y
	(2)

(1)

(g) The melting points of the elements in Group 1 show a trend.

The table below shows the atomic numbers and melting points of the Group 1 elements.

Element	Atomic number	Melting point in °C
Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	X
Caesium	55	29

Plot the data from the table on the graph below.

(h) Predict the melting point, X, of rubidium, atomic number 37Use the graph above.

Melting point = _____°C

Q3.

This question is about metals and metal compounds.

(a) Iron pyrites is an ionic compound.

The diagram below shows a structure for iron pyrites.

Determine the formula of iron pyrites.

Use the diagram above.

ck	el is extracted from nickel oxide by reduction with carbon.
	Explain why carbon can be used to extract nickel from nickel oxide.
	An equation for the reaction is:
	$NiO + C \longrightarrow Ni + CO$
	Calculate the percentage atom economy for the reaction to produce nickel.
	Relative atomic masses (A_r): C = 12 Ni = 59
	Relative formula mass (M_r): NiO = 75
	Give your answer to 3 significant figures.

For more help, please our website www.exampaperspractice.co.uk

_

Q4.

	Percentage atom economy =%	
	(Total 11 m	aı
nis	question is about Group 7 elements.	
hlc	rine is more reactive than iodine.	
a)	Name the products formed when chlorine solution reacts with potassium iodide solution.	
)	Explain why chlorine is more reactive than iodine.	

Explain why hydrogen chloride is a gas at room temperature.

Answer in terms of structure and bonding.

(3)

(d) Bromine reacts with methane in sunlight.

The diagram below shows the displayed formulae for the reaction of bromine with methane.

The table below shows the bond energies and the overall energy change in the reaction.

	С—Н	Br—Br	C—Br	H—Br	Overall energy change
Energy in kJ/mol	412	193	x	366	-51

Calculate the bond energy **X** for the C—Br bond.

Use the diagram and the table above.

		Bond energy X =	kJ/mol
			(Total 11 marks
Titaı	nium is a tran	sition metal.	
Titai	nium is extrac	cted from titanium dioxide in a two-stage industrial p	rocess.
	Stage 1	$TiO_2 + 2 \ C + 2 \ Cl_2 \rightarrow TiCl_4 + 2 \ CO$	
	Stage 2	TiCl₄ + 4 Na → Ti + 4 NaCl	
(a)	Suggest on	e hazard associated with Stage 1.	
			(1
(b)	Water must	be kept away from the reaction in Stage 2.	
	Give one re sodium.	eason why it would be hazardous if water came into	contact with
			(1

Q5.

(c) Suggest why the reaction in **Stage 2** is carried out in an atmosphere of argon

Fitanium chloride is a li	quid at room temperature.	
Explain why you would emperature.	not expect titanium chloride to	be a liquid at room

In **Stage 2**, sodium displaces titanium from titanium chloride.

(e) Sodium atoms are oxidised to sodium ions in this reaction.

Why is this an oxidation reaction?

(f) Complete the half equation for the oxidation reaction.

 $Na \rightarrow \underline{\qquad} + \underline{\qquad} \tag{1}$

(g) In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.

The equation for the reaction is:

 $TiCl_4 + 4 Na \rightarrow Ti + 4 NaCl$

Relative atomic masses (A_r): Na = 23 Cl = 35.5 Ti = 48

Explain why titanium chloride is the limiting reactant.

You **must** show your working.

(4)

(1)

(h) For a **Stage 2** reaction the percentage yield was 92.3%

The theoretical maximum mass of titanium produced in this batch was 13.5 kg.

Calculate the actual mass of titanium produced.

	Mass of titanium =	kg
		(Total 15 marks
26.		
Inis	question is about metal oxides.	
Whe	n sodium is heated in oxygen, sodium oxide is produced.	
(a)	Balance the equation for the reaction.	
	$\qquad \qquad Na + O_2 \rightarrow 2 Na_2O$	(1
(b)	Why is this an oxidation reaction?	
		(1
(c)	Sodium oxide is added to water and shaken. Universal indicator is added. The pH of the solution is 14	
	What is the colour of the universal indicator?	
	Tick (√) one box.	
	Green	
	Purple	

Red	
Yellow	

(1)

(d) Aluminium oxide reacts with hydrochloric acid to produce a salt.

What is the name of the salt produced?

Tick (\checkmark) one box.

Aluminium chloride	
Aluminium nitrate	
Aluminium sulfate	
Aluminium sulfide	

(1)

A student investigates the solubility of four metal oxides and four non-metal oxides in water.

The student tests the pH of the solutions formed.

The table shows the student's results.

Type of oxide	Oxide	Solubility in water	pH of solution
	Sodium oxide	Soluble	14
Matal avidas	Calcium oxide	Soluble	10
Metal oxides	Magnesium oxide	Slightly soluble	9
	Zinc oxide	Insoluble	No solution formed
	Carbon dioxide	Soluble	5
Non-metal oxides	Sulfur dioxide	Soluble	2
	Phosphorus oxide	Soluble	1

Silicon dioxide	Insoluble	No solution formed
-----------------	-----------	--------------------

The student makes two conclusions.

Conclusion 1: 'All metal oxides produce alkaline solutions.'

Conclusion 2: 'All non-metal oxides produce acidic solutions.'

(e) Explain why the student's conclusions are only partly correct.

Use information from the table above.

(2)		
(Total 9 marks)		

Q7.

Figure 1 shows an outline of the modern periodic table.

Figure 1

J, L, M, Q and R represent elements in the periodic table.

(a) Which element has four electrons in its outer shell?

Tick (\checkmark) one box.

(c) Which element reacts with potassium to form an ionic compound?

(f) In the 1860s scientists were trying to organise elements.

Figure 2 shows the table published by John Newlands in 1865. The elements are arranged in order of their atomic weights.

н	Li	Be	В	С	Ν	0
F	Na	Mg	AI	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co,Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce,La	Zr	Di,Mo	Ro,Ru
Pd	Ag	Cd	U	Sn	Sb	Te

Figure 2

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

8	Н				8 				3					
ēs.	Li	E	Be	2	в		С	1	N		c		F	
A PARTY	Na	N	Лg	1	AI		Si	1	P	1	s	1	CI	
к	Cu	Ca	Zn	?	?	Ti	?	V	As	Cr	Se	Mn	Br	Fe Co Ni
Rb	Ag	Sr	Cd	Y	In	Zr	Sn	Nb	Sb	Мо	Те	?	Ĩ	Ru Rh Pd

Mendeleev's table became accepted by other scientists whereas Newlands' table was not.

Evaluate Newlands' and Mendeleev's tables.

You should include:

- a comparison of the tables
- reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.

(6) (Total 11 marks)

Q8.

The electronic structure of the atoms of five elements are shown in the figure below.

The letters are **not** the symbols of the elements.

Choose the element to answer the question. Each element can be used once, more than once or not at all.

Use the periodic table to help you.

(a) Which element is hydrogen?

Tick one box.

(b) Which element is a halogen?

Tick **one** box.

(c) Which element is a metal in the same group of the periodic table as element **A**?

Tick one	e box.				
Α	в] c	D	E	
					(1)

(d) Which element exists as single atoms?

Tick **one** box.

(e) There are two isotopes of element **A**. Information about the two isotopes is shown in the table below.

Mass number of the isotope	6	7
Percentage abundance	92.5	7.5

Use the information in the table above above to calculate the relative atomic mass of element ${\bf A}.$

Give your answer to 2 decimal places.

	Relative atomic mass =	()
	(Total 8 m	4) arks
9.	27	
An a	tom of aluminium has the symbol ¹³ Al	
(a)	Give the number of protons, neutrons and electrons in this atom of aluminium.	
	Number of protons	
	Number of neutrons	
	Number of electrons	
		(3
(b)	Why is aluminium positioned in Group 3 of the periodic table?	
		(1
		•

Some of the properties of two transition elements and two Group 1 elements are shown in the table below.

	Transition elements		Group 1 elements	
	Chromium	Iron	Sodium	Caesium
Melting point in °C	1857	1535	98	29
Formula of oxides	CrO Cr ₂ O ₃ CrO ₂ CrO ₃	FeO Fe2O3 Fe3O4	Na ₂ O	Cs2O

Use your own knowledge **and** the data in the table above to compare the chemical and physical properties of transition elements and Group 1 elements.

(6) (Total 10 marks)

Q10.

This question is about halogens and their compounds.

The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

Element	Boiling point in °C	Colour in aqueous solution
Fluorine	-188	colourless
Chlorine	-35	pale green
Bromine	Х	orange
lodine	184	brown

(a) Why does iodine have a higher boiling point than chlorine?

Tick **one** box.

lodine is ionic and chlorine is covalent

lodine is less reactive than chlorine

The covalent bonds between iodine atoms are stronger

The forces between iodine molecules are stronger

(1)

(b) Predict the boiling point of bromine.

(1)

(c) A redox reaction takes place when aqueous chlorine is added to potassium iodide solution.

The equation for this reaction is:

$$Cl_2(aq) + 2KI(aq) \rightarrow I_2(aq) + 2KCI(aq)$$

Look at table above.

What is the colour of the final solution in this reaction?

Tick one box.	
Brown	
Orange	
Pale green	
Colourless	

(1)

(d) What is the ionic equation for the reaction of chlorine with potassium iodide?

Tick **one** box. $Cl_{2} + 2K \rightarrow 2KCl$ $2l^{-} + Cl_{2} \rightarrow l_{2} + 2Cl^{-}$ $l^{-} + Cl \rightarrow l + Cl^{-}$ $l^{-} + K^{+} \rightarrow Kl$

(1)

(e) Why does potassium iodide solution conduct electricity?

Tick **one** box.

It contains a metal	
It contains electrons which can move	
It contains ions which can move	
It contains water	

(1)

(f) What are the products of electrolysing potassium iodide solution?

Tick one box.

(1) (Total 6 marks)

Q11.

There are eight elements in the second row (lithium to neon) of the periodic table.

(a) **Figure 1** shows a lithium atom.

(i) What is the mass number of the lithium atom in **Figure 1**?

Tick (\checkmark) one box.

3	
4	
7	

(1)

(ii) What is the charge of an electron?

Tick (\checkmark) one box.

-1	
0	
+1	

(1)

(iii) Protons are in the nucleus.

Which other sub-atomic particles are in the nucleus?

Tick (\checkmark) one box.

ions

molecules

neutrons

(1)

(b) What is **always** different for atoms of different elements?

Tick (✓) one box. number of neutrons number of protons number of shells

(1)

(c) **Figure 2** shows the electron arrangements of three different atoms, **X**, **Y** and **Z**.

These atoms are from elements in the second row (lithium to neon) of the periodic table.

Which atom is from an element in Group 3 of the periodic table?

Tick (\checkmark) one box.

Atom X	
Atom Y	
Atom Z	

(1)

(d) **Figure 3** shows the electron arrangement of a different atom from an element in the second row of the periodic table.

(i) Give the chemical symbol of this element.

(1)

(1)

(ii) Why is this element unreactive?

(Total 7 marks)

Q12.

This question is about fluorine.

(a) **Figure 1** shows the arrangement of electrons in a fluorine atom.

(i) In which group of the periodic table is fluorine?

(1)

(ii) Complete the table below to show the particles in an atom and their relative masses.

Name of particle	Relative mass
Proton	
Neutron	1
	Very small

(2)

(iii) Use the correct answer from the box to complete the sentence.

alkalis	alloys	isotopes

Atoms of fluorine with different numbers of neutrons are

called ______.

(1)

(b) Sodium reacts with fluorine to produce sodium fluoride.

(i) Complete the word equation for this reaction.

sodium	+		\rightarrow	
--------	---	--	---------------	--

(ii) Complete the sentence.

Substances in which atoms of two or more different elements are chemically

combined are called ______.

(1)

(1)

(iii) The relative formula mass (M_r) of sodium fluoride is 42.

Use the correct answer from the box to complete the sentence.

ion

The relative formula mass (M_r) , in grams, of sodium fluoride is one

_____ of the substance.

(1)

(iv) **Figure 2** shows what happens to the electrons in the outer shells when a sodium atom reacts with a fluorine atom.

The dots (•) and crosses (x) represent electrons.

Figure 2

Use Figure 2 to help you answer this question.

Describe, as fully as you can, what happens when sodium reacts with fluorine to produce sodium fluoride.

(\mathbf{v})	Sodium fluorido is an ionio s	ubstanco	(4
(•)	What are two properties of i	onic substances?	
	Tick (√) two boxes.		
	Dissolve in water		
	Gas at room temperature		
	High melting point		
	Low boiling point		

(2) (Total 13 marks)

Q13.

This question is about elements and the periodic table.

(a) Use the correct answers from the box to complete the sentences.

	atoms	atomic weights	electrons	proton numbers
--	-------	----------------	-----------	----------------

Newlands' and Mendeleev's periodic tables show the elements in order of

their ______.

Following the discovery of protons and _____, the modern periodic

table shows the elements in order of their ______.

(3)

(b) **Figure 1** shows the position of six elements in the modern periodic table.

(i) Which **one** of these six elements has the lowest boiling point?

		(1)
(ii)	Complete the sentence.	
	In the periodic table, rubidium (Rb) is in Group	<i>(</i> ,)
(iii)	Which of these three elements is the most reactive?	(1)
	Tick (✔) one box.	
	Lithium (Li)	
	Sodium (Na)	
	Potassium (K)	
		(1)
(iv)	Which two statements are correct?	
	Tick (✓) two boxes.	
	Iron has a higher density than potassium.	

Iron is softer than potassium.

Iron reacts vigorously with water.

Iron forms ions that have different charges.

(c) **Figure 2** shows sodium being put into water.

Describe three observations that can be seen when sodium is put into water.

1.			
2.			
3.			

(Total 11 marks)

(3)

Q14.

This question is about elements and the periodic table.

For more help, please our website www.exampaperspractice.co.uk

(2)

- (a) Newlands and Mendeleev both produced early versions of the periodic table.
 - (i) Complete the sentence.

In their periodic tables, Newlands and Mendeleev arranged the elements in

order of ______.

(1)

(ii) Name the particle that allowed the elements to be arranged in order of their atomic number in the modern periodic table.

(1)

(b) The diagram below shows the position of nine elements in the modern periodic table.

Li								F	
Na								CI	
к					Cu			Br	
Rb								T	

(i) Which **one** of the nine elements shown in the diagram above has the lowest boiling point?

(1)

 Copper and potassium have different melting points and boiling points. Give one other difference between the properties of copper and potassium.

(1)

(iii) Explain why the reactivity of the elements increases going down Group 1 from lithium to rubidium but decreases going down Group 7 from fluorine to iodine.

(Total 8 marks)

(4)

Q15.

Five elements, V, W, X, Y and Z, are shown in the periodic table.

The letters are **not** the chemical symbols of the five elements.

										۷
	w								z	
X					Y					

Use the correct letter, V, W, X, Y or Z, to answer each question.

Q16.

This question is about atoms.

Atoms contain electrons, neutrons and protons.

(a) (i) Which of these particles has a positive charge?

Tick (✓) **one** box.

Electron	
Neutron	
Proton	

(1)

(ii) Which of these particles does not have an electrical charge?

Tick (✓) **one** box.

(1)

(b) How are the elements in the periodic table arranged?

Tick (✓) **one** box.

In order of increasing atomic number

In order of increasing mass number

(1)

(c) The diagram shows the arrangement of the electrons in an atom of fluorine.

(i) How many protons are in an atom of fluorine?

Tick (✓) **one** box.

(1)

(ii) The boiling point of fluorine is -188 °C.

What is the state of fluorine at room temperature?

Tick (✓) **one** box.

Solid	
Liquid	
Gas	

(1)

- (d) Fluorine reacts with copper to form an ionic compound.
 - (i) Explain, in terms of electrons and electronic structure, what happens to a fluorine atom when it reacts with copper.

Use the figure above to help you to answer this question.

_____ ____ (2) (ii) Describe a chemical test which would show that a solution contains copper(II) ions. ____ _ _____

(2) (Total 9 marks)

Q17.

This question is about metals.

(a) Which unreactive metal is found in the Earth as the metal itself?

Tick (✓) one box.

i	aluminium		
9	gold		
I	magnesium		
			(1)
(b)	Complete the sentend	ce.	
	Aluminium is an elem	ent because aluminium is made of	

only one type of ______.

(1)

(c) **Figure 1** shows the electronic structure of an aluminium atom.

(i) Use the correct words from the box to complete the sentence.

	electrons	ions	protons	neutrons	shells]
	The nucleus of a	an aluminium	atom contains		and	
		·				(2)
(ii)	Complete the se	entence.				
	In the periodic ta	able, aluminiu	um is in Group _		·	
ماليم	ainium in unad for	kitaban fail				(1)

Figure 2 shows a symbol on a box of kitchen foil.

(d)

Figure 2

The symbol means that aluminium can be recycled. It does not show the

correct chemical symbol for aluminium.

(i) What is the correct chemical symbol for aluminium?

(ii)	Give two reasons why aluminium should be recycled.
Alun	ninium has a low density, conducts electricity and is resistant to
Alun corro Whio	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen
Alun corro Whio foil? Give	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen e a reason for your answer.
Alun corro Whio foil? Give	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen a reason for your answer.
Alun corro Whio foil? Give	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen e a reason for your answer.
Alun corro Whic foil? Give	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen e a reason for your answer.
Alun corro foil? Give	ninium has a low density, conducts electricity and is resistant to osion. ch one of these properties makes aluminium suitable to use as kitchen e a reason for your answer.

Q18.

This question is about atomic structure and elements.

- (a) Complete the sentences.
 - (i) The atomic number of an atom is the number of

- (ii) The mass number of an atom is the number of
- (b) Explain why an atom has no overall charge.

Use the relative electrical charges of sub-atomic particles in your explanation.

(2)

(1)

(1)

(c) Explain why fluorine and chlorine are in the same group of the periodic table.Give the electronic structures of fluorine and chlorine in your explanation.

- (2)
- (d) The diagram shows the electronic structure of an atom of a non-metal.

What is the chemical symbol of this non-metal?

Tick (✓) **one** box.

(1)

(e) When elements react, their atoms join with other atoms to form compounds. Complete the sentences.

(i) Compounds formed when non-metals react with metals consist of

particles called ______.

(1)

(ii) Compounds formed from only non-metals consist of

particles called _____.

(1) (Total 9 marks)

Q19.

The diagram shows the chemical symbols of five elements in the periodic table.

Group	1	2											3	4	5	6	7	0		
																		He		
							·							С						
	Na																СІ			
											Cu									
(a) Chơ (i) (ii) (iii) (ii)	Doose TI TI TI TI	e the he e he e he el	e cor leme leme	rect ent t ent t ent ir	che hat hat i n Gr vith	mica is ar is a oup a fu	al sy n alk tran: 4 is Il ou	mbo ali n sitio	ol to neta n me	com l is _ etal	is	e ea 	ell) o	fele		e. ons i	S		(1) 1) 1)
(b) Wh	ich d	othe	r ele	emer	 nt go	bes i	n the	e sh	ade	d bo	ox?		,,,, 0				5		(1)
																	(1	Fotal	(I 5 mark	1) s)

Q20.

In 1866 John Newlands produced an early version of the periodic table.

Part of Newlands' periodic table is shown below.

Column	1	2	3	4	5	6	7
	Н	Li	Be	В	С	Ν	0
	F	Na	Mg	AI	Si	Р	S

|--|

Newlands' periodic table arranged all the known elements into columns in order of their atomic weight.

Newlands was trying to show a pattern by putting the elements into columns.

(a) Iron (Fe) does **not** fit the pattern in column 7.

Give a reason why.

(1) (b) In 1869 Dmitri Mendeleev produced his version of the periodic table. Why did Mendeleev leave gaps for undiscovered elements in his periodic table? (1) (c) Newlands and Mendeleev placed the elements in order of atomic weight. Complete the sentence. The modern periodic table places the elements in order of _ • (1) Lithium, sodium and potassium are all in Group 1 of the modern periodic table. (d) Explain why.

)	How fluor	do the boiling points of the halogens change down the group from ine to iodine?								
		_								
(b)	Sodium bromide is produced by reacting sodium with bromine.									
	Sodium bromide is an ionic compound.									
	(i) Write down the symbols of the two ions in sodium bromide.									
	(ii)	Chlorine reacts with sodium bromide solution to produce bromine and one other product.								
		Complete the word equation for the reaction.								
		chlorine + sodium bromide —>> bromine +								
	(iii)	Why does chlorine displace bromine from sodium bromide?								

(iv) Use the Chemistry Data Sheet to help you to answer this question.

Suggest which halogen could react with sodium chloride solution to produce chlorine.

Q22.

The positions of eight elements in the modern periodic table are shown below.

Grou	ip 1	2											3	4	5	6	7	0
			_															
	Li														Ν			
				-									AI					
	к							Fe			Cu				As		Br	
Choos (a)	Choose the correct chemical symbols to complete each sentence. (a) The two metals that react vigorously with water are and																	
(b)	The e	emer	nt use	ed as	a ca	italys	st in t	he Ha	aber	proc	ess is	6					(, 1)
(c)	The tv	vo ele	emen	ts wi	th fiv	e ele	ctror	ns in t	heir	oute	r shel	ll (hig	ghest	ene	rgy			
	level)	are				and _				_ ·							(1)
(d)	Iron ha	as ion	is wit netal	h dif	feren has i	t cha ons v	arges with a	differe	ent c	harg	es is						(1)
										0	-				_		(1)
															(To	tal 4	mark	s)

(a) **Figure 1** shows an atom of element **G**.

Draw a ring around the correct answer to complete each sentence.

	(i)	Label A shows			
		an electron	an ion	a nucleus	(1)
	(ii)	The particle labelled	B is		
		an isotope	a molecule	a neutron	(1)
	(iii)	The mass number of	element G is		(1)
		5	6	11	
	(iv)	l lse the periodic tabl	e to identify eleme	nt G	(1)
	(10)	Element G is		it O .	
		boron	carbon	sodium	(1)
(b)	Figu	Ire 2 shows a compou	nd of G and hydrog	gen.	
			Figure 2		

Draw a ring around the correct answer to complete each sentence.

(i)	The formula of the compound in Figure 2 is						
	GH₃	G₃H	3HG	(1)			
(ii)	i) The type of bonding shown in Figure 2 is						
	covalent	ionic	metallic	(1) (Total 6 marks)			

Q24.

(a) The symbols for seven different elements are shown in **Figure 1**.

Figure 1

										He			
	Be												
Na												S	Ar
	Ca						Fe						

Choose the correct symbol from **Figure 1** to answer each question.

You may use each symbol once, more than once or not at all.

Write the symbol that represents:

(i) a Group 1 element

(ii)	a transition metal
(iii)	an element with electrons in the same number of energy levels as an atom of argon (Ar)
(iv)	an element which forms an oxide that dissolves in water to form an acidic solution
(v)	an element that forms a chloride with the formula XCI
A te as s	acher put a cube of sodium metal into water containing universal indicator, hown in Figure 2 .

Figure 2

The equation for the reaction is:

(b)

2Na(s)	+	2H ₂ O(I)	>	2NaOH (aq)	+	H ₂ (g)
sodium	+	water	>	sodium hydroxide	+	hydrogen

(i) The sodium floated on the surface of the water. The universal indicator turned purple.

Give three other observations that would be seen during the reaction.

2.		
3.		

(c) **Figure 3** represents the electronic structure of a sodium atom.

Figure 3

(1)

In the space below, draw the electronic structure of a sodium ion. Include the charge on the ion.

Q25.

Use the periodic table and the information in the table below to help you to answer the questions.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Н						
Li	Be	В	С	Ν	0	F
Na	Mg	AI	Si	Р	S	CI

The table shows part of an early version of the periodic table.

(a) Hydrogen was placed at the top of Group 1 in the early version of the periodic table.

The modern periodic table does **not** show hydrogen in Group 1.

(i) State one **similarity** between hydrogen and the elements in Group 1.

(1)

(ii) State one **difference** between hydrogen and the elements in Group 1.

(1)

(b) Fluorine, chlorine, bromine and iodine are in Group 7, the halogens.

The reactivity of the halogens decreases down the group.

Bromine reacts with a solution of potassium iodide to produce iodine.

Br₂ + 2KI ----- 2KBr + I₂

(i) In the reaction between bromine and potassium iodide, there is a

reduction of bromine to bromide ions.

In terms of electrons, what is meant by reduction?

Complete the hal nolecules.	fequation	for the oxid	ation of iodic	le ions to iodiı	าย
	2I [_]		*		
xplain, in terms lement in Group	of electron 7.	ic structure	, why fluorine	e is the most I	eactive

Q26.

This question is about the periodic table of elements.

Use the Chemistry Data Sheet to help you to answer these questions.

In 1869 Dmitri Mendeleev produced an early version of the periodic table.

- (a) Draw a ring around the correct answer to complete each sentence.
 - (i) Mendeleev first arranged the elements in order of

	atomic weight.
their	date of discovery.
	electron number.

(1)

(ii) Mendeleev then placed elements with similar properties in columns

	groups.
called	periods
	shells

(1)

(iii) When the next element did not fit the pattern,

Mendeleev

ignored the element. left a gap. put the element at the end of the row.

(1)

(iv) Mendeleev was not able to include the noble gases (Group 0) in his periodic

Г

	are not elements.
table because the noble gases	are not reactive.
	had not been discovered by 1869.

(1)

(b) Use the correct word from the box to complete each sentence.

electrons molecules neut	rons protons
--------------------------	--------------

In the modern periodic table elements are arranged in order of the number of

_____ in their nucleus. Elements in the same group have

same number of ______ in their highest energy level

(outer shell).

the

(2)

(c) Sodium (Na) is in Group 1 of the periodic table.

Nickel (Ni) is a transition element.

Tick (\checkmark) two correct statements about sodium and nickel.

Statement	Tick (✔)
Sodium and nickel are both metals.	
Sodium has a higher melting point than nickel.	
Sodium is more reactive than nickel.	
Sodium is harder than nickel.	

(2)

(1)

(d) Chlorine, bromine and iodine are in Group 7 of the periodic table.

Chlorine is more reactive than bromine.

(i) Complete the word equation for the reaction between chlorine and sodium bromide.

chlorine + sodium bromide ----- + sodium chloride

(ii) Why does iodine **not** react with sodium bromide solution?

		(1)
(Total	10	marks)

Q27.

The periodic table on the Data Sheet may help you to answer these questions.

Part of the periodic table is shown below.

The letters are **not** the symbols of these elements.

Choose your answers **only** from the letters shown in the periodic table above.

Which letter, A, B, C, D or E, represents:

(b) A chemistry teacher demonstrated the reaction between sodium and water to a class of students. One of the students wrote the following notes:

The reaction between sodium and water
A piece of sodium was cut easily into smaller pieces with a knife.
The sodium was added to some water in a trough.
The sodium:

- floated
- melted quickly to give a silvery ball
- moved on the surface of the water
- fizzed.

Use the information in the box to help you answer these questions.

What evidence is there that:

(i) sodium has a low melting point

		(1
ii)	sodium is soft	
		(1
ii)	a gas was produced?	
		(1
		(Total 6 mark)

Q28.

In 1869, Dmitri Mendeleev produced his periodic table of the elements.

Mendeleev placed the alkali metals in the same group.

(a) What evidence did Mendeleev use to decide that the alkali metals should be in the same group?

<i>(</i> 1)	
1)	In terms of protons
ii)	in terms of electrons.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State	e two properties of transition elements that make them more useful than li metals for making water pipes.
State Ika	e two properties of transition elements that make them more useful than li metals for making water pipes.

	(
(Total 9 ma	ark

Q29.

(a) Dmitri Mendeleev was one of the first chemists to classify the elements by arranging them in order of their atomic weights. His periodic table was published in 1869.

How did Mendeleev know that there must be undiscovered elements **and** how did he take this into account when he designed his periodic table?

(b) By the early 20th century protons and electrons had been discovered.

Describe how knowledge of the numbers of protons and electrons in atoms allow chemists to place elements in their correct order and correct group.

- (c) The transition elements are a block of elements between Groups 2 and 3 of the periodic table.
 - (i) Transition elements have similar properties.

_

Explain why, in terms of electronic structure.

(ii) There are **no** transition elements between the Group 2 element magnesium and the Group 3 element aluminium.

Give a reason why, in terms of electronic structure.

(3)

(2)

(1) (Total 8 marks)

Q30.

A student was investigating the reaction of lithium and water.

She added a few drops of universal indicator to water in a trough and added a piece of lithium.

The word equation for the reaction is:

lithium + water \longrightarrow lithium hydroxide + hydrogen

(a) (i) The lithium floated on the water.

State **two** other observations that the student would **see** during the reaction.

	1.	
		-
	2.	
		(2)
(ii)	Balance the symbol equation for the reaction of lithium and water.	
	2 Li(s) + $H_2O(I) \longrightarrow LiOH(aq) + H_2(g)$	(2)
		(-)

(iii) Describe a simple test and the result that would show the gas was hydrogen.

(iv) All Group 1 metals have similar reactions with water.

State why, in terms of electronic structure.

(b) Lithium and other Group 1 metals have different properties from the transition metals.

Tick (\checkmark) two properties that are properties of Group 1 metals.

They react with oxygen.

They form coloured compounds.

They are strong and hard.

They have low melting points.

- (c) The electronic structure of a potassium atom is 2, 8, 8, 1
 - (i) Draw a diagram to show the electronic structure of a potassium ion.

Show the charge on the potassium ion.

(1)

(ii) Potassium is more reactive than sodium.

Explain why, in terms of electronic structure.

(Total 13 marks)

Q31.

This question is about lithium and sodium.

(a) Use the Chemistry Data Sheet to help you to answer this question.

In which group of the periodic table are lithium and

sodium?	Group	

(1)

(b) A lithium atom can be represented as ${}^{7}_{3}Li$

The diagram represents the lithium atom.

(i) Some particles in the nucleus have a positive charge.What is the name of these particles?

(1)

(ii) Some particles in the nucleus have no charge.What is the name of these particles?

(1)

(iii) Use the correct answer from the box to complete the sentence.

- (c) Sodium reacts with chlorine to produce sodium chloride.
 - sodium + chlorine \longrightarrow sodium chloride

The diagram shows how the reaction happens.

Only the outer electrons are shown.

Draw a ring around the correct answer to complete each sentence.

(1)

(d) Sodium chloride is an ionic compound.

Tick (✓) **two** properties of ionic compounds.

magnetic

Property	Tick (✔)
Do not dissolve in water	
High melting points	
Low boiling points	
Strong bonds	

(2)

(e) (i) The formula of sodium chloride is NaCl

Calculate the relative formula mass of sodium chloride.

Relative atomic masses: Na = 23; Cl = 35.5

		Relati	ve formula mass =
(ii)	Draw a rin	g around the c	orrect answer to complete each sentence.
	The relativ	ve formula mas	s of a substance, in grams,
		ion	
	is one	isotope	of the substance.
		mole	
Nai	noparticles of	f sodium chlori	de (salt) are used to flavour crisps.
Wh	at are nanop	articles?	
			(Total 1)
			(Total 12

Use the Chemistry Data Sheet to help you answer these questions.

(a) Complete the sentences.

Q32.

Elements in the periodic table are arranged in order of atomic

The elements in Group ______ are called the noble gases.

(2)

Calcium (Ca) is in Group 2. (b)

Name one other element in Group 2.

(c) Draw a ring around the correct answer to complete each	sentence.
--	-----------

Q33.

The graph shows the boiling points of the halogens.

(c) In the UK water companies add chlorine to tap water.

Why is chlorine added to tap water?

(d) Water companies add fluoride to tap water in some parts of the UK.

Fluoride is added to improve dental health.

Suggest **one** reason why some people are against adding fluoride to tap water.


```
(1)
(Total 6 marks)
```

(1)

Q34.

Lithium is in Group 1 of the periodic table.

Lithium reacts with water to produce a gas and an alkaline solution.

(a) (i) Name the gas produced.

(1)

(ii) Which ion causes the solution to be alkaline?

(1)

(b) Potassium is also in Group 1 of the periodic table. Potassium reacts with water in a similar way to lithium.

Write down **two** differences you would see between the reactions of potassium and lithium with water.

1.			
2.			

(Total 4 marks)

(2)

Q35.

By 1869, about 60 elements had been discovered. Mendeleev arranged these elements in a table, in order of their atomic weight. He put elements with similar chemical properties in the same column. Mendeleev and part of his table are shown below.

Column									
1	2	3	4	5	6	7			
н									
Li	Be	В	С	N	0	F			
Na	Mg	AI	Si	Р	S	CI			

By unknown / неизвестен (here / здесь) [Public domain], via Wikimedia Commons

Use the periodic table on the Data Sheet to help you to answer these questions.

(a) Draw a ring around the correct answer to complete the sentence.

	groups.
In the periodic table the columns are known as	periods.
	rows.

(b) Suggest one reason why hydrogen should not have been put in column 1.

1	1	١	
١.	•	,	

(1)

(1)

(c) In 1895, the first of a new family of elements was discovered. One of the new elements was called helium.

Where has this new family of elements been placed in the modern periodic table?

(d) Complete the sentence.

In the periodic table on your Data Sheet, the elements are arranged in order of their

atomic _____ .

(1) (Total 4 marks)

Mark schemes

Q1.		
(a)	7	1
(b)	small molecule	1
(c)	F ₂	1
(d)	the reactivity decreases (going down Group 7) allow the reactivity decreases from chlorine to iodine	1
	(because) chlorine displaces bromine and iodine allow (because) chlorine has two reactions allow (because) neither bromine nor iodine can displace chlorine	1
	(and) bromine displaces iodine or iodine does not react allow (and) bromine has one reaction or iodine has no reactions allow (and) iodine cannot displace bromine	1
(e)	80	1
(f)	(1.2 kg =) 1200 (g) or (900 g =) 0.9 (kg)	1
	$(\frac{900}{1200} \times 100) = 75(\%)$	
	or	
	$(\frac{0.9}{1.2} \times 100) = 75(\%)$	

allow an answer correctly calculated from:

or
$$(\frac{\text{conversion of 900}}{1.2} \times 100)$$

an answer of 75 (%) scores 2 marks

[9]

Q2. (a)	sodium oxide allow Na₂O	1
(b)	oxidation	1
(c)	13	1
(d)	sodium hydroxide	1
(e)	OH-	1
(f)	$(volume =) \frac{250}{1000} \text{ or } \frac{1}{4}$	
	or 0.25 (dm³)	1
	or	
	$(mass per cm^3 =) \frac{40}{1000} (g)$ or 0.04 (g)	
	$(\frac{250}{1000} \times 40 =) 10 \text{ (g)}$ an answer of 10 (g) scores 2 marks	1
(g)	all points correct allow a tolerance of ±½ a small square allow 1 mark for 3 points correct ignore any attempt at a line of best fit	2
(h)	39 °C allow any value from 34 to 46 (°C)	1 [10]
Q3.	5.0	

(a) FeS₂

do not accept equations

1

(b)	26	1
	30	1
	26	1
	must be this order	
(c)	 any two from: iron has a high(er) melting / boiling point iron is dense(r) iron is hard(er) allow iron is less malleable / ductile iron is strong(er) iron is less reactive allow specific reactions showing difference in reactivity 	
	 iron has ions with different charges iron forms coloured compounds iron can be a catalyst allow iron is magnetic allow the converse statements for sodium allow transition metal for iron allow Group 1 metal for sodium ignore references to atomic structure ignore iron rusts 	2
(d)	carbon is more reactive (than nickel) allow converse	1
	 (so) carbon will displace / replace nickel (from nickel oxide) allow (so) nickel ions gain electrons or (so) carbon will remove oxygen (from nickel oxide) allow (so) carbon transfers electrons to nickel (ions) 	1
(e)	(total $M_{\rm r}$ of reactants =) 87	1
	(percentage atom economy) = $\frac{59}{27} \times 100$	1
	87	

allow (percentage atom economy)

=	59	×100
	incorrectly calculated Mr	~100

		1
	= 67.8 (%)	
	allow an answer from an incorrect calculation to 3 sig figs	1
	an answer of 67.8 (%) scores 3 marks	-
	an answer of 67.8160919 (%) or correctly rounded answer to 2, 4 or more sig figs scores 2 marks	
	an incorrect answer for one step does not prevent allocation of marks for subsequent steps	
		[11]
~		
Q4. (a)	notassium chloride and iodine	
(u)	either order	
	allow KCI for potassium chloride and I_2 for iodine	1
(b)	(chlorine's) outer electrons / shell closer to the nucleus	
	allow chlorine has fewer shells	
	allow chlorine atom is smaller than iodine atom	
	ignore chlorine has fewer outer shells	1
	(so) the chloring nucleus has greater attraction for outer electrons	/ shall
	(so) the chlorine hucieus has greater attraction for outer electrons	
	do not accept incorrect types of attraction	
		1
	(so) chlorine gains an electron more easily	
	max 2 marks can be awarded if the answer	1
	refers to chloride / iodide instead of chlorine / iodine	
	allow converse statements	
	allow energy levels for shells throughout	
(c)	hydrogen chloride is made of small molecules	
	allow hydrogen chloride is simple molecular	1
	(aa budragan ablarida) baa waak intermalagular faraga*	-
	(so hydrogen chlonde) has weak intermolecular forces	1
	(intermolecular forces) require little energy to overcome*	
		1
	*do not accept reference to bonds breaking unless applied to intermolecular bonds	

(d)	(bonds broken = 4(412) + 193 =)1841	
(~)		1
	(bonds formed = 3(412) + 366 + X =) 1602 + X	
		1
	-51 = 1841 - (1602 + X)	
	allow use of incorrectly calculated values of bonds broken and / or bonds formed from steps 1 and 2 for steps 3 and 4	
		1
	(X =) 290 (kJ/mol)	
	allow a correctly calculated answer from use of	
	-51 = bonds formed – bonds broken	1
	OR	
	alternative method ignoring the 3 unchanged C-H bonds	
	(412 + 193 =) 605 (1)	
	366 + X (1)	
	$-51 = 605 - (366 + \mathbf{X}) (1)$	
	(X =) 290 (kJ/mol) (1)	
	an answer of 290 (kJ/mol) scores 4 marks	
	an answer of 188 (kJ/mol) scores 3 marks	
	an incorrect answer for one step does not	
	prevent allocation of marks for subsequent steps	[11]
		[]
Q5.		
(a)	chlorine is toxic	
	allow carbon monoxide is toxic	
	allow poisonous for toxic	
	ignore harmful / deadly / dangerous	
	allow a poisonous gas is used / produced	
	allow titanium chioride is corrosive	1
(h)	any one from:	
	very exothermic reaction	
	allow explosive	

allow violent reaction ignore vigorous reaction ignore sodium is very reactive

produces a corrosive solution

ignore alkaline

allow caustic for corrosive

٠

	produces hydrogen, which is explosive / flammable allow flames produced ignore sodium burns	1
(c)	argon is unreactive / inert	
(0)	allow argon will not react (with reactants /	
	products / elements)	1
		1
	oxygen (from air) would react with sodium / titanium	
	water vapour (from air) would react with sodium / titanium	
	allow elements / reactants / products for sodium /	
	titanium	1
(d)	metal chlorides are usually ionic	
(u)	allow titanium chloride is ionic	
		1
	(so)(metal chlorides) are solid at room temperature	
	or (so)(metal chlorides) have high melting points	
	allow titanium chloride for metal chlorides	
		1
	(because) they have strong (electrostatic) forces between the ions	
	ignore strong ionic bonds	
	or	
	(but) must be a small molecule or covalent	
	allow molecular	1
	allow alternative approach:	
	titanium chloride must be covalent or has small	
	with weak forces between molecules	
	do not accept bonds unless intermolecular	
	bonds(1)	
	(but) metal chiondes are usually ionic (1)	
(e)	sodium (atoms) lose electrons	
	do not accept references to oxygen	1
(f)	$N_2 \longrightarrow N_2 + c^-$	
(1)	do not accept e for e	
		1
(g)	(<i>M</i> ^r of TiCl ₄ =) 190	
	20.000	
	(moles Na = $\frac{20000}{23}$ =) 870 (mol) *	

(moles TiCl₄ =
$$\frac{40\,000}{190}$$
 =) 211 (mol) *

*allow **1** mark for 0.870 mol Na **and** 0.211 mol TiCl₄ allow use of incorrectly calculated M_r from step 1

either

(sodium is in excess because) 870 mol Na is more than the 844 mol needed or

(because) 211 mol TiCl₄ is less than the 217.5 mol needed

the mark is for correct application of the factor of 4

other correct reasoning showing, with values of moles or mass, an excess of sodium or insufficient TiCl₄ is acceptable allow use of incorrect number of moles from steps 2 and / or 3

alternative approaches:

approach 1:

 $(M_r \text{ of } TiCl_4 =) 190(1)$

(40 kg TiCl_r needs)

(=) 19.4 (kg) (1) so 20 kg is an excess (1)

approach 2:

(*M*_r of TiCl₄ =) 190(1) (20 kg Na needs)

(=) 41.3 (kg) (1) so 40 kg is not enough (1)

$$(actual mass =) \frac{92.3}{100} \times 13.5$$

(h)

or (actual mass =) 0.923 × 13.5

= 12.5 (kg)

allow 12 / 12.46 / 12.461 / 12.4605 (kg)

1

1

1

1

1

Q6. (a)	4 Na + $O_2 \rightarrow 2Na_2O$	
	allow multiples	1
(b)	(sodium) gains oxygen	1
(c)	purple	1
(d)	aluminium chloride	1
(e)	Level 2 (3-4 marks): Relevant reasons are identified, given in detail and logically linked to form a clear account.	
	Level 1 (1-2 marks): Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	
	Level 0 No relevant content	
	Indicative content	
	 conclusion 1 pH values above 7 are alkaline sodium oxide, calcium oxide and magnesium oxide do form alkaline solutions (so correct for those) not all metal oxides form solutions (so incorrect for zinc oxide) 	S
	 conclusion 2 pH values below 7 are acidic carbon dioxide, sulfur dioxide and phosphorus oxide do form acidic solutions (so correct for those) not all non-metal oxides form solutions (so incorrect for silicon oxide)] 	4
(f)	metal oxides produce alkaline solutions if they dissolve in water allow 1 mark for most metal oxides produce alkaline solutions	2
Q7. (a)	J	1
(b)	M and Q either order	1

[10]

(c) **Q**

- (d) **M**
- (e) L

1

1

1

(f) Level 3 (5-6 marks):

A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

Level 2 (3-4 marks):

Some logically linked reasons are given. There may also be a simple judgement.

Level 1 (1-2 marks):

Relevant points are made. They are not logically linked.

Level 0

No relevant content

Indicative content

comparative points

- both tables have more than one element in a box
- both have similar elements in the same column
- both are missing the noble gases
- both arranged elements in order of atomic weight

advantages of Mendeleev / disadvantages of Newlands

- Newlands did not leave gaps for undiscovered elements
- Newlands had many more dissimilar elements in a column
- Mendeleev left gaps for undiscovered elements
- Mendeleev changed the order of some elements (e.g. Te and I)

points which led to the acceptance of Mendeleev's table

- Mendeleev predicted properties of missing elements
- elements with properties predicted by Mendeleev were discovered
- Mendeleev's predictions turned out to be correct
- elements were discovered which fitted the gaps

6

Q8. (a) B (b) D (c) E (d) C 1

(e)	92.5 × 6 a 7× 7.5	Ind	1
	607.5 100		1
	6.075		1
	6.08		1
		allow 6.08 with no working shown for 4 marks	[8]

Q9.

(a)	13 (protons)	
	The answers must be in the correct order.	
	if no other marks awarded, award 1 mark if number of	
	protons and electrons are equal	1
	14 (noutrons)	
		1
	13 (electrons)	
		1
(b)	has three electrons in outer energy level / shell	
. ,	allow electronic structure is 2.8.3	
		1

(c) Level 3 (5–6 marks):

A detailed and coherent comparison is given, which demonstrates a broad knowledge and understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3-4 marks):

A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise.

Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic knowledge of some of the relevant ideas. The response may fail to make comparisons between the points raised.

0 marks:

No relevant content.

Indicative content

Physical

Transition elements

- high melting points
- high densities
- strong
- hard

Group 1

- low melting points
- low densities
- soft

Chemical

Transition elements

- low reactivity / react slowly (with water or oxygen)
- used as catalysts
- ions with different charges
- coloured compounds

Group 1

• very reactive / react (quickly) with water / non-metals

6

1

[10]

- not used as catalysts
- white / colourless compounds
- only forms a +1 ion

Q10.

(a)	The forces between iodine molecules are stronger	1	
(b)	anything in range +30 to +120	1	
(C)	Brown	1	
(d)	$2 I^- + CI_2 \rightarrow I_2 + 2 CI^-$	1	
(e)	It contains ions which can move	1	
(f)	hydrogen iodine	1	[6]
Q11. (a)	(i) 7	1	
	(ii) —1		

- (iii) neutrons
- (b) number of protons

			1	
(c)	atom	Y	1	
(d)	(i)	Ne allow neon	1	
	(ii)	has a full outer shell allow in Group 0 allow a noble gas		
		or		
		full outer energy level allow the shells are full		
		or		
		has 8 electrons in its outer shell ignore in Group 8	1	
			1	[7]
Q12.				
(a)	(i)	7 / seven	1	
	(ii)	1 do not accept – 1		
		Electron	1	
	(iii)	isotopes	1	
(b)	(i)	(sodium +) fluorine \rightarrow sodium fluoride	1	
	(ii)	compounds	1	
	(iii)	mole	1	
	(IV)	sodium (atom) loses	1	
		fluorine (atom) gains	1	
		one electron	1	
		ions formed	1	
		allow sodium forms positive (ion) or fluorine forms negative		

		(ion) allow form ionic bond allow to gain a full outer shell of electrons allow forms noble gas structure max 3 if reference to incorrect particle / bonding	
	(v)	Dissolve in water	1
		High melting point	1 [13]
Q13. (a)	ator	nic weights must be in this order	1
	elec	trons	1
	prot	on numbers	1
(b)	(i)	H/hydrogen allow H₂ or h	1
	(ii)	one / 1 allow alkali metals	1
	(iii)	Potassium (K)	1
	(iv)	Iron has a higher density than potassium	1
		Iron forms ions that have different charges	1
(c)	any • •	three from: melts fizzes / bubbles / effervesces <i>allow gas produced</i> sodium floats size of the sodium decreases <i>allow dissolves / disappears</i> sodium moves <i>allow two marks for moves around on the surface of the</i>	
		water	3

(a)	(i)	atomic weights	
		anow atomic masses	1
	(ii)	proton	
		allow proton number	1
(b)	(i)	F/fluorine	
		allow F ₂	1
	(ii)	any one from:	
		copper has a higher density	
		copper is stronger copper is barder	
		copper is less reactive	
		allow named property	
		ignore colour, conductivity, melting point and boiling point	
		allow converse for potassium	
			1
	(iii)	relative distance from nucleus	
		allow more / fewer energy levels / shells or larger / smaller	
		atom	1
			1
		relative attraction to nucleus	
		allow more / less shielding	
			1
		relative ease of gain or loss of electron	
			1
		opposite explanation of ease of gain or loss of electron for other group	_
		max 3 marks if 'outer' not mentioned	1
			[8]
			[0]

Q15.

(a)	Y	1
(b)	W	1
(c)	V	1
(d)	W	1
(e)	X	1

[5]

Q16.

	(a)	(i)	Proton	1
		(ii)	Neutron	1
	(b)	In ord	der of increasing atomic number	1
	(c)	(i)	9	1
		(ii)	Gas	1
	(d)	(i)	gains (one) electron	1
			(to gain a) full outer energy level or noble gas configuration <i>allow because it has seven outer electrons</i>	1
		(ii)	add sodium hydroxide (solution) allow ammonia (solution) or ammonium hydroxide or any other soluble hydroxide or flame test	1
			(forms a) blue precipitate second mark dependent on suitable reagent being added allow blue-green / blue / green if flame test given	1
Q1	7.			
	(a)	gold		1
	(b)	atom	(s)	1
	(c)	(i)	protons any order allow proton	1
			neutrons allow neutron	1
		(ii)	3 / three	1
	(d)	(i)	AI	

[9]

ignore any numbers / charges

1

	(ii)	 any two from: limited resource expensive in terms of energy / mining effects on the environment, such as, landfill, atmospheric pollution, guarrying 		
		allow uses a lot of energy to extract.		
			2	
(e)	resi	stant to corrosion	1	
	doe	s not react (with water or food)		
		allow one mark for low density with a suitable reason given	1	[10]
Q18.				
(a)	(i)	protons		
		allow "protons or electrons", but do not allow "protons and electrons"		
			1	
	(ii)	protons plus / and neutrons		
			1	
(b)	(beo prot	cause the relative electrical charges are) $-(1)$ for an electron and $+(1)$ for a on		
		allow electrons are negative and protons are positive	1	
			1	
	and	the number of electrons is equal to the number of protons		
		cancel out		
			1	
(c)	(the	electronic structure of) fluorine is 2,7 and chlorine is 2,8,7		
		allow diagrams for the first marking point	1	
			1	
	(SO num	fluorine and chlorine are in the same group) because they have the same		
	man	if no other mark awarded, allow 1 mark for have the same /		
		similar properties	1	
			1	
(d)	S		1	
(\mathbf{a})	(;)	iona		
(e)	(1)		1	
	(ii)	molecules		
	(")		1	

Q19.

(a)	(i)	Na	allow sodium	1
	(ii)	Cu	allow copper	1
	(iii)	С	allow carbon	1
	(iv)	He	allow helium	1
(b)	Н		allow hydrogen do not allow H₂	1

Q20.

(a)	(iron) is a metal accept transition element allow (iron) had different properties (to oxygen and sulfur) ignore electrons	1
(b)	so that elements with similar properties could be placed together allow to make the pattern fit ignore undiscovered elements	1
(c)	atomic number(s) allow proton number(s)	1
(d)	all have one electron in the outer shell (highest energy level) allow same number of electrons in the outer shell (highest energy level)	1
	(so they) have similar properties or react in the same way <i>allow specific reactions e.g. with water</i>	1

[9]

[5]

[5]

Q21.

(a)	incre	ase		1	
(b)	(i)	Na⁺ and Br⁻			
		both required	1	1	
	(ii)	sodium chloride			
		allow NaCl			
		do not allow :	sodium chlorine	1	
	(iii)	chlorine is more rea	active than bromine		
		allow convers	se argument		
		allow symbols	ls Cl, Cl ₂ , Br and Br ₂		
		allow chlorine	e / it is more reactive		
		do not allow (chloride or bromide	1	
	(iv)	fluorine			
		allow F/F_{2}			
		do not allow i	fluoride.		
				1	
					[5]
000					
Q22.		-1.17			
(a)	LI ar				
		eltner order			
		allow lithium a	and potassium	1	
(b)	F۵				
(0)	10	allow iron			
				1	
(c)	N an	1 As			
(0)	i i ui	either order			
		allow nitroger	n and arsenic		
				1	
(d)	Cu				
		allow copper			
				1	
					[4]
Q23					
(a)	(i)	an electron			
(4)	(')			1	
	(ii)	a neutron			

Page 90 of 256

			1	
	(iii)	11	1	
	(iv)	boron	1	
(b)	(i)	GH₃	1	
	(ii)	covalent	1	
				[6]
Q24. (a)	(i)	Na allow sodium / phonetic spelling if more than one answer is given apply list principle	1	
	(ii)	Fe allow iron / phonetic spelling if more than one answer is given apply list principle	1	
	(iii)	Na or S allow sodium or sulfur / sulphur / phonetic spelling if more than one answer is given apply list principle	1	
	(iv)	S allow sulfur / sulphur / phonetic spelling if more than one answer is given apply list principle	1	
	(v)	Na allow sodium / phonetic spelling if more than one answer is given apply list principle	1	
(b)	(i)	any three from:		
		 effervescence / fizzing or bubbles or gas produced do not allow incorrectly named gas sodium melts or turns into a ball sodium moves (on the surface) steam / mist / vapour is produced ignore heat / temperature / flame / spark sodium gets smaller / disappears allow dissolves colour of indicator is darker / more intense near the sodium Must be linked to near the sodium. 		

	(ii)	hydroxide or OH-		
		allow OH without a charge		
		do not allow OH⁺	1	
			1	
(c)	-			
		** +		
	1			
	*	(O) *		
		*		
	L			
		diagram showing electron configuration of ion is 2,8	1	
		charge on ion is +	1	
		Bracket not necessary		
		[2,8] ⁺ is worth 1 mark as there is no diagram		
			1	
				[11]
Q25.				
(a)	(i)	any one from:		
		one electron in the outer shell / energy level		
		 form ions with a 1+ charge 		
			1	
	(ii)	any one from:		
		• bydrogen is a non-metal		
		 (at RTP) hydrogen is a gas 		
		hydrogen does not react with water		
		 hydrogen has only one electron shell / energy level bydrogen can gain an electron or bydrogen can form a negative / 		
		hydride / H ⁻ ion		
		 hydrogen forms covalent bonds or shares electrons 		
		accept answers in terms of the Group 1 elements	_	
			1	
(b)	(i)	(bromine) gains electrons		
		it = bromine		
		do not accept bromide ion gains electrons		
		ignore loss of oxygen	1	
			1	
	(ii)	l ₂		

3

+ 2e ⁻	
$2I - 2e^- \rightarrow I_2$ for 2 marks	

	(iii)	fluorine is the smallest atom in Group 7 or has the fewest energy levels in Group 7 or has the smallest distance between outer shell and nucleus the outer shell must be mentioned to score 3 marks	
		fluorine has the least shielding or the greatest attraction between the nucleus and the outer shell	1
		therefore fluorine can gain an electron (into the outer shell) more easily	1
Q26.			
(a)	(i)	atomic weight	1
	(ii)	groups	1
	(iii)	left a gap	1
	(iv)	had not been discovered by 1869	1
(b)	prot	ons must be in correct order	1
	elec	trons	1
(c)	sodi	um and nickel are both metals	1
	sodi	um is more reactive than nickel	1
(d)	(i)	bromine allow Br ₂ / Br do not allow bromide	1
	(ii)	iodine is less reactive (than bromine) <i>it = iodine</i> <i>allow converse</i> <i>do not allow bromide</i>	1

[10]

1

[8]

Q27.				
(a)	(i)	E	1	
	(ii)	С	1	
	(:::)	A	1	
	(111)	A	1	
(b)	(i)	quickly melted allow melts in contact with water, allow bp 100 °C (of water) shows mp is low ignore one other piece of information	1	
	(ii)	easily cut ignore one other piece of information	1	
	(iii)	effervescence / fizzing / bubbling		
		ignore one other piece of information	1	[6]
Q28.				
(a)	simi	ilar properties		
		allow same properties		
		allow correct example of property		
		ignore answers in terms of atomic structure	1	
(b)	(i)	in order of atomic / proton number		
		allow increasing number (of protons)	1	
	(ii)	elements in same group have same number (<i>of electrons</i>) in outer shell or <i>highest energy level</i>		
		allow number (of electrons) increases across a period	1	
(c)	any	two from:		
	•	statements must be comparative stronger / harder		
		ignore higher densities		
	•	less reactive higher melting points		
		ignore boiling point	2	
(d)	read	ctivity increases down group	4	

	allow converse throughout	
	for next three marks, outer electron needs to be mentioned once otherwise max = 2	
		1
	outer electron is furth <u>er</u> from nucleus	
	allow <u>more</u> energy levels / shells	
	allow larg <u>er</u> atoms	1
	less attraction between outer electron and nucleus	
	allow <u>more</u> shielding	
		1
	therefore outer electron lost more easily	1
Q29.		
(a)	properties	
	allow some elements didn't fit pattern	
		1
	left gaps	1
(b)	(elements placed in) atomic / proton number order	
(~)		1
	(elements in) same group have same number of outer electrons	
		1
	any one from:	
	 number of protons = number of electrons 	
	 reactions/(chemical) properties depend on the (outer) electrons 	
	number of shells gives the period	
	allow number of shells increases down the group	
		1
(c)	(i) (transition elements usually) have same / similar number of outer / 4th	
	allow 2 electrons in outer shell	
		1
	(because) inner (3rd) shell / energy level is being filled	
	ignore shells overlap	1
	(ii) 2nd shall (sharay lovel can (shir) have maximum of 8 electrons	-
	(ii) <u>2 sheii</u> / energy level can (only) have maximum of 8 electrons accept no d-orbitals	

[9]

or	
2 nd shell / energy level cannot have	18 electrons

1 [8]

Q30.

30.			
(a)	(i)	any two from:	
		bubbles / effervescence / fizzing	
		ignore hydrogen / gas produced Ithium disappears / gets smaller	
		allow dissolves	
		 do not allow melts / burns lithium moves on the surface of the water 	
		ignore floats	
		(universal indicator) turns blue / purple	2
	(ii)	2	
	(")	left-hand side correct	
			1
		2 right hand side as most	
		ngnt-nand side correct allow multiples for full credit	
			1
	(iii)	light / burn, which will give a (squeaky) pop / explosion	
			1
	(iv)	all have 1 electron in their outer shell / energy level	
		energy level	
			1
(b)	The	y react with oxygen	1
	The	v have low melting points	
		,	1
(c)	(i)	electronic structure [2,8,8] is drawn	
		incomplete inner shells scores a maximum of 1 mark	1
		charge is +	
		allow [2,8,8]* for 1 mark	
			1
	(ii)	because (in potassium) the outer shell electron is further away from the	
		it should be clear that the candidate is referring to the outer	
		shell electron: if this is not clear a maximum of 2 marks can	

			1	
		therefore the outer shell electron is less strongly <u>attracted</u> to the nucleus or is more shielded from the <u>attraction</u> of the nucleus and so the outer shell electron in potassium is more easily lost		
		3 marks can be scored for answering the question in terms	1	
		of sodium	1	
				[13]
Q31. (a)	1 / on	e		
(b)	(i)	protons	1	
	(ii)	neutrons	1	
	(iii)	7	1	
(c)	(i)	losing	1	
	(ii)	a positive	1	
	(iii)	electrostatic	1	
(d)	high	melting points	1	
	Stron	g bonds	1	
(e)	(i)	58.5	1	
	(ii)	mole	1	
(f)	very s	small (particles) or ignore tiny / small / smaller / microscopic etc.		
	1-100	Onm in size or		
	(parti	cle with a) few hundred atoms	1	
			-	[12]

Q32.

(a) number

0 allow 8 1 (b) beryllium or magnesium or strontium or barium or radium allow correct symbols 1 (c) (i) an alkali metal 1 (ii) a transition metal 1 (d) for undiscovered elements 1 accept so elements with similar properties were in the same groups 1 accept so elements fitted the pattern of properties 1 (ii) Increases 1 (b) (i) -1 allow Cl ⁻ allow - allow - allow - allow correct symbol equation (i) sodium + chlorine → sodium chloride 1 (c) reduce microbes accept sterilise accept sterilise accept sterilise accept sterilise accept sterilise				1
allow 8 1 (b) beryllium or magnesium or strontium or barium or radium allow correct symbols 1 (c) (i) an alkali metal 1 (ii) a transition metal 1 (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties 1 (a) (i) gas 1 (i) Increases 1 (b) (i) -1 allow Cl ⁻ allow - allow negative 1 (i) sodium + chlorine → sodium chloride allow correct symbol equation 1 (c) reduce microbes accept revent diseases accept prevent diseases accept prevent diseases accept prevent diseases accept set filse acce		0		
 (b) beryllium or magnesium or strontium or barium or radium allow correct symbols (c) (i) an alkali metal (ii) a transition metal (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties q33. (a) (i) gas (i) Increases (b) (i) -1 allow Cl⁻ allow - allow negative (ii) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes accept prevent diseases 			allow 8	1
allow correct symbols 1 (c) (i) an alkali metal 1 (ii) a transition metal 1 (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties 1 Q33. (i) gas 1 (ii) Increases 1 (b) (i) -1 allow Cl ⁻ allow – allow negative 1 (ii) sodium + chlorine → sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases 1	(b)	ber	/llium or magnesium or strontium or barium or radium	
 (c) (i) an alkali metal (ii) a transition metal (iii) a transition metal (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties (a) (i) gas (i) Increases (ii) Increases (iii) Increases (i) allow Cl⁻ allow - allow negative (i) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes accept sterilise accept prevent diseases 	()	-	allow correct symbols	
 (c) (i) an alkali metal (ii) a transition metal (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties Q33. (a) (i) gas (ii) Increases (iii) Increases allow Cl⁻ allow - allow negative (ii) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes		(1)		1
 (ii) a transition metal (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties (a) (i) gas (ii) Increases (b) (i) -1 allow Cl - allow - allow negative (ii) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes accept sterillise accept prevent diseases 	(C)	(i)	an alkali metal	1
1 (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties Q33. (a) (i) (ii) lncreases (iii) lncreases (i) -1 allow Cl ⁻ allow - allow negative 1 (ii) sodium + chlorine → sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases		(ii)	a transition metal	
 (d) for undiscovered elements accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties Q33. (a) (i) gas (ii) Increases (b) (i) -1 allow Cl⁻ allow - allow negative (ii) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes accept sterilise accept prevent diseases		(1)		1
accept so elements with similar properties were in the same groups accept so elements fitted the pattern of properties (a) (i) gas (i) Increases (b) (i) -1 allow Cl^- allow $-$ allow negative (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases	(d)	for u	undiscovered elements	
accept so elements fitted the pattern of properties (a) (i) gas (ii) Increases (b) (i) -1 <i>allow Cl</i> - <i>allow negative</i> (ii) sodium + chlorine → sodium chloride <i>allow correct symbol equation</i> (c) reduce microbes <i>accept sterilise</i> <i>accept sterilise</i> <i>accept prevent diseases</i> <i>bit if </i>			accept so elements with similar properties were in the same aroups	
Q33. (a) (i) gas (ii) Increases (i) Increases (i) -1 $allow Cl^ allow allow negative$ (i) sodium + chlorine \rightarrow sodium chloride $allow correct symbol equation$ (c) reduce microbes $accept sterilise$ $accept prevent diseases$ $accept prevent diseases$ $accept prevent diseases$			accept so elements fitted the pattern of properties	
Q33. (a) (i) gas 1 (ii) Increases 1 (b) (i) -1 $allow CI^-$ allow - allow negative 1 (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes $accept sterilise$ accept sterilise $accept prevent diseases 1$				1
Q33. (a) (i) gas $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				
(a) (i) gas 1 (ii) Increases 1 (b) (i) -1 1 $allow Cl^-$ allow - allow negative 1 (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases $accept prevent diseases$	Q33.			
(ii) Increases 1 (b) (i) -1 $allow Cl^-$ allow - allow negative 1 (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases	(a)	(i)	gas	1
(ii) increases 1 (b) (i) -1 $allow Cl^-$ allow negative (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation (c) reduce microbes accept sterilise accept prevent diseases accept prevent diseases		(ii)	Incroases	
(b) (i) -1 allow Cl - allow - allow negative (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation (c) reduce microbes accept sterilise accept prevent diseases		(11)		1
allow CI^- allow – allow negative (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases the Viciolocity	(b)	(i)	-1	
allow – allow negative 1 (ii) sodium + chlorine \rightarrow sodium chloride allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases the dist for the			allow CI-	
<pre>1 (ii) sodium + chlorine → sodium chloride</pre>			allow – allow pegative	
 (ii) sodium + chlorine → sodium chloride allow correct symbol equation (c) reduce microbes accept sterilise accept prevent diseases 			anow negative	1
allow correct symbol equation 1 (c) reduce microbes accept sterilise accept prevent diseases		(ii)	sodium + chlorine \rightarrow sodium chloride	
(c) reduce microbes accept sterilise accept prevent diseases			allow correct symbol equation	1
accept sterilise accept prevent diseases		rodu		-
accept prevent diseases	(0)	Teut	accept sterilise	
			accept prevent diseases	
allow disinfect			allow disinfect	
allow kill bacteria / germs / microbes / micro-organisms			allow kill bacteria / germs / microbes / micro-organisms	
allow to make it safe to drink			allow to make it safe to drink	
ignore ger nu or bacieria 1			Ignore yer nu or bacieria	1
(d) any one from:	(d)	any	one from:	
no freedom of choice		•	no freedom of choice	

[6]

allow unethical

1

1

1

2

1

[4]

[6]

- fluoride in toothpaste
- <u>too much</u> can cause fluorosis
 allow <u>too much</u> can cause damage to teeth

Q34.

- (a) (i) hydrogen
 - accept H₂ allow H
 - (ii) hydroxide
 accept OH
 allow OH
 do not accept lithium hydroxide
- (b) any **two** from:

'it' = potassium

potassium:

accept converse for lithium

- reacts / dissolves faster allow reacts more vigorously / quickly / violently / explodes ignore reacts more
- bubbles / fizzes faster
 allow fizzes more
 allow more gas
- moves faster (on the surface)
 allow moves more
- melts
 allow forms a sphere
- produces (lilac / purple) flame allow catches fire / ignites do **not** accept other colours

Q35.

- (a) groups
- (b) it is a non-metal

	allow it is not a metal	1
(c)	to the right of column 7 / Group 7 accept in Group 0 ignore Group 8 / noble gases	1
(d)	(atomic) number allow proton number	1

[4]

Q1.

How a metal is used depends on its properties.

A teacher demonstrated some of the properties of sodium (an alkali metal) and iron (a transition element) by placing a small cube of each metal into water.

A student observed that:

Sodium	Iron
floated on the surface of the water	sank to the bottom of the water
melted to form a molten ball of sodium	did not melt
reacted to produce a gas	did not react
no sodium was left after 5 minutes	the cube of iron remained after 5 minutes

(a) Tick (\checkmark) **two** properties of sodium compared with iron that are shown by the student's observations.

Sodium compared with iron	Tick(√)
sodium has a higher boiling point	
sodium has a lower density	

sodium is harder	
sodium is more reactive	
sodium is softer	

Г

(b) Draw a ring around the correct answer to complete the word equation.

					carbon dioxide
sodium	+	water	\rightarrow sodium hydroxide	+	hydrogen
					oxygen

(1)

(2)

(c) Draw a ring around the correct answer to complete the sentence.

	H⁺(aq)	
Sodium hydroxide is an alkali because it produces	OH⁻(aq)	ions
	Na⁺(aq)	

in aqueous solution.

(1) (Total 4 marks)

Q2.

By 1869, about 60 elements had been discovered. Mendeleev arranged these elements in a table, in order of their atomic weight. He also put elements with similar chemical properties in the same columns.

Mendeleev and part of his table are shown below.

	Group							
	1	2	3	4	5	6	7	8
Period 1	Н							
Period 2	Li	Be	В	С	Ν	0	F	
Period 3	Na	Mg	AI	Si	Р	S	CI	

Period 4	K Cu	Ca Zn	_	Ti -	V As	Cr Se	Mn Br	Fe Co Ni
----------	---------	----------	---	---------	---------	----------	----------	----------

(a) (i) Name one element in Group 1 of Mendeleev's table that is not in Group 1 of the periodic table on the Data Sheet.
 Give a reason why this element should not be in Group 1.

Name of element	 	
Reason	 	

- (ii) Which group of the periodic table on the Data Sheet is missing from Mendeleev's table?
- (1)

(2)

- (b) The gaps (–) in Mendeleev's table were for elements that had not been discovered.
 - (i) Compare Mendeleev's table with the periodic table on the Data Sheet.

Name one of the elements in Period 4 that had not been discovered by 1869.

- (1)
- (ii) Mendeleev was able to make predictions about the undiscovered elements. This eventually led most scientists to accept his table.

Suggest what predictions Mendeleev was able to make about these undiscovered elements.

(c) In terms of their electronic structure:

tata why lithiu	um and sod	lium ara ba	th in Group	1	
	and sou	iuni ale bo	un in Group	1	
xplain why so	odium is mo	ore reactive	than lithium	1.	

Q3.

The diagrams show the sub-atomic particles in four different atoms.

- Atom A
- Atom B

Atom C

Atom D

Use the Chemistry Data Sheet to help you to answer these questions.

Draw a ring around the correct answer to complete each sentence. (a)

> energy level. molecule.

(i) The centre of each atom is called the

	nucleus.	
	(ii) The centre of each atom contains neutrons and electrons.	
	protons.	
)	Complete the sentence.	
	There is no overall electrical charge on each atom because the	
	number of is equal to the number of	
:)	What is the name of the element represented by atom D ?	
I)	Which two of the atoms, A , B , C and D , are in the same group of the periodic table?	
	Give a reason for your answer.	
	Atom and atom	

(Total 6 marks)

Q4.

The table shows some properties of gases in dry air

Gas in dry air	Density in kg/m³	Melting point in °C	Boiling point in °C	Percentage (%) in air
Nitrogen	1.2506	-210	-196	78.08
Oxygen	1.4290	-219	-183	20.95
Carbon dioxide	1.977	-57	-57	0.033
Helium	0.1785	-272	-269	0.00052
Neon	0.8999	-249	-246	0.0019
Argon	1.7837	-189	-186	0.934

Krypton	3.74	-157	-153	0.00011
Xenon	5.86	-112	-108	0.0000087

In 1895, Lord Rayleigh isolated nitrogen from dry air by removing the other known (a) gases, oxygen and carbon dioxide. He then discovered that nitrogen from dry air had a different density to pure nitrogen produced from chemical reactions. He concluded that nitrogen extracted from dry air was mixed with another gas. The density of nitrogen extracted from dry air was higher than the density of pure nitrogen.

Use the information above to explain why.

(b) Gases from the air are separated to provide raw materials used in many different industrial processes.

Steps in dry air separation:

Step 1: Filter to remove solid particles

Step 2: Remove carbon dioxide

Step 3: Cool the remaining air to -200 °C

Step 4: Separate by allowing the liquefied gases to warm up.

Carbon dioxide is removed before the air is cooled to -200 °C. (i)

Suggest one reason why.

(ii)	Which two gases do not condense when the remaining air is cooled to -
	200 °C?

_and _____

Two gases in air do **not** separate completely when the liquefied gases are (iii) allowed to warm up.

Name these **two** gases and give a reason for your answer.

(2)

(1)

(1)

(2) (Total 6 marks)

Q5.

Platinum and gold can both be used to make wedding rings.

By Jeff Belmonte from Cuiabá, Brazil (Flickr) [CC-BY-2.0], via Wikimedia Commons

Use the Data Sheet to help you to answer these questions.

(a) Draw a ring around the part of the periodic table in the list below to which platinum and gold belong.

aroup 1	aroup 2	transition elements	aroup 7
3. • • • • •	3		3

(1)

(b) Platinum and gold have properties that make them suitable for wedding rings.

Tick () two	of these	properties.
--------	-------	----------	-------------

Property	Tick (√)
These metals do not react with air.	
These metals have low melting points.	
These metals do not react with water.	

These metals have low densities.

(2) (Total 3 marks)

(1)

Q6.

The halogens are in Group 7 of the periodic table.

- (a) Why, in terms of electrons, are the halogens in Group 7?
- (b) Sea water contains bromide ions (Br). The bromide ions can be changed to bromine by bubbling chlorine gas into sea water. Chlorine is able to displace bromine from sea water because chlorine is more reactive than bromine.
 2Br(aq) + Cl₂(g) → Br₂(g) + 2Cl⁻(aq)
 Explain, in terms of electrons, why chlorine is more reactive than bromine.

(3) (Total 4 marks)

Q7.

John Newlands was a chemist who worked in a sugar factory.

In 1866 he designed a periodic table. He arranged the elements in order of their relative atomic masses.

He found a repeating pattern for some of the elements. Newlands wrote, 'the eighth element starting from a given one, is a kind of repetition of the

first, like the eighth note in an octave of music'.

(b)

н	Li	G	Во	С	N	ο
F	Na	Mg	AI	Si	Р	S
CI	к	Ca	Cr	Ti	Mn	Fe
Co, Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce, La	Zr	Di, Mo	Ro, Ru
Pd	Ag	Cd	U	Sn	Sb	Те
I	Cs	Ba, V	Та	w	Nb	Au
Pt, Ir	TI	Pb	Th	Hg	Bi	Os

Newlands' periodic table

(a) In Newlands' periodic table, the elements lithium, sodium and potassium are grouped together.

Give **two** properties of these elements which support the idea that they should be grouped together.

(2)

(c) State **and** explain **one** way in which Mendeleev improved Newlands' periodic table.

(2) (Total 7 marks)

Q8.

The periodic table on the Data Sheet may help you to answer these questions.

(a) Part of the periodic table is shown below.

									в				
												С	
							D						
											Е		
F										-			

The letters are **not** the symbols of the elements.

Choose your answers **only** from the letters shown in the periodic table above.

Which letter, A, B, C, D, E or F, represents

(i) aluminium

(ii) a Group 5 element

(3)

(iii)	an alkali metal	
		(1)
(iv)	the element with atomic (proton) number of 47	
		(1)
(v)	an element with seven electrons in its outer shell?	
		(1)

(b) The table shows the boiling points of the Group 7 elements.

The elements are arranged in alphabetical order.

Group 7	element	
Name	Symbol	Boiling point in °C
Astatine	At	337
Bromine		58
Chlorine	CI	-34
Fluorine	F	-188
lodine	I	184

(i) The symbol for bromine is missing from the table.

What is the symbol for bromine?

Symbol = _____

(1)

(ii) Arrange these elements in order of **decreasing** boiling point. The first one and the last one have been done for you.

At

- _____ F
- Highest boiling _____ Lowest boiling point

(c) The table shows some statements about Group 7 elements.

Tick (\checkmark) the **two** correct statements.

	Tick (√)
They are halogens.	
They are metals.	
They become less reactive down Group 7.	
They are compounds.	

(2) (Total 9 marks)

Q9.

The periodic table on the Data Sheet may help you answer these questions.

(a) Many chemists have contributed to the development of the periodic table.

CI	K	Ca	Cr	Ti	Mn	Fe
Co, Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce, La	Zr	Di, Mo	Ro, Ru

Many chemists in 1866 did not accept Newland's; periodic table.

By Conget at nl.wikipedia [Public domain], from Wikimedia Commons

(1)

(2)

(i) Give **one** piece of evidence which supports Newlands' ideas.

- (ii) Suggest **two** reasons why many chemists in 1866 did not accept Newlands' ideas.
- (b) Chlorine, bromine and iodine are Group 7 elements.

A student investigated the reactivity of these elements. The student added:

- aqueous chlorine to potassium bromide and potassium iodide solutions
- aqueous bromine to potassium chloride and potassium iodide solutions
- aqueous iodine to potassium chloride and potassium bromide solutions.

The student's results are shown below.

Solution	Potassium chloride	Potassium bromide	Potassium iodide
Chlorine		Solution turned orange-brown	Solution turned brown

Bromine	No reaction		Solution turned brown
lodine	No reaction	No reaction	

(i) Use these results to state **and** explain the trend in reactivity of these Group 7 elements.

- (ii) Complete the equation below, which represents the reaction between chlorine and potassium bromide.
 - Cl₂ + 2KBr → + 2KCl
- (iii) In terms of electronic structure, state why chlorine, bromine and iodine are in Group 7.
- (1)

(1)

(2)

(c) Lithium, sodium and potassium are Group 1 elements.

Group 1 elements become **more** reactive down the group.

Explain why in terms of electronic structure.

Q10.

Use the periodic table on the Data Sheet to help you to answer these questions.

(a) The following is a list of symbols of some elements.

(b)

Mendeleev suggested his version of the periodic table in 1869.

Part of Mendeleev's	table is shown below.
---------------------	-----------------------

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Н						
Li	Be	В	С	Ν	Ο	F
Na	Mg	AI	Si	Ρ	S	CI
К	Ca	#	Ti	V	Cr	Mn
Cu	Zn	#	#	As	Se	Br

By unknown / неизвестен (here / здесь) [Public domain], via Wikimedia Commons

There are differences between Mendeleev's table and the periodic table on the Data Sheet.

Draw a ring around the correct answer to complete the sentences.

(i) Mendeleev left gaps (shown by #) in his table.

Q11.

Read the information about protecting the bottoms of ships.

Table of data							
	Lead Copper Muntz						
Cost (£/kg)	£1.20	£3.20	£2.30				
Melting point (°C)	327	1083	904				
Stops sea worms attacking wood	Yes	Yes	Yes				
Stops barnacles and seaweed sticking to the bottom of the ship	No	Yes	Yes				

- (a) Use the information to answer the following questions.
 - (i) Suggest why copper replaced lead.
 - (ii) Suggest why Muntz Metal replaced copper.
- (b) A sample of Muntz Metal contains a very small amount of iron as an impurity.
 - (i) Name an instrumental method of analysis that could be used to detect iron.
- (1)

(1)

- (ii) Suggest why an instrumental method would detect the iron in this sample of Muntz Metal but a chemical method is **not** likely to be successful.
- (1)
- (c) Today, ships are made from steel. Steels are alloys of iron, a transition metal.
 Give two properties of transition metals that make them suitable for making ships.
 Property 1 ______

Property 2 _____

(2) (Total 6 marks)

Q12.

Use the periodic table on the Data Sheet and the information below to help you answer these questions.

Mendeleev was one of the first chemists who classified elements in a systematic way based on atomic weight. He suggested his version of the periodic table in 1869.

He put the elements in order of their atomic weights but reversed the order for some pairs of elements. Then he arranged them in a table so that chemically similar elements were in columns known as Groups. He also left gaps and made predictions.

Part of Mendeleev's table is shown below.

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
н						
Li	Ве	В	С	N	0	F
Na	Mg	AI	Si	Р	S	CI
К	Са	#	Ti	V	Cr	Mn
Cu	Zn	#	#	As	Se	Br

Rb	Sr	Y	Zr	Nb	Мо	#			
Ag	Cd	In	Sn	Sb	Te	I			
The gaps Me	The gaps Mendeleev left are shown by #.								
	By u	nknown / неизе	вестен (here / з	десь) [Public d	omain], via Wik	kimedia Commor			

- (a) Which group of elements in the modern periodic table is missing from Mendeleev's table?
- (b) Mendeleev reversed the order for some pairs of elements. For example, he put tellurium (Te, atomic weight 128) before iodine (I, atomic weight 127), as shown in his table.

Why did he do this?

(c) In 1869 many chemists did **not** agree with Mendeleev's periodic table.

Suggest three reasons why.

(3)

(d) In the 20th century, the arrangement of elements in the periodic table was explained in terms of atomic structure.

Describe the links between atomic structure and the periodic table.

(1)

(2) (Total 7 marks)

Q13.

(a) The periodic table on the Data Sheet may help you to answer these questions.

Part of the periodic table is shown below.

											A			
	В					С								
													D	
Е														

The letters are **not** the symbols of these elements.

Choose your answers **only** from the letters shown in the periodic table above.

Which letter, A, B, C, D or E, represents:

(i)	an alkali metal	Letter	
			(1)
(ii)	the element calcium	Letter	
			(1)
(iii)	a transition element	Letter	

(iv)	a Group 4 element?	
------	--------------------	--

-

(1)

(b) A chemistry teacher demonstrated the reaction between sodium and water to some students. One of the students wrote the following notes.

The reaction between sodium and water							
A piece of sodium was cut easily into smaller pieces with a snife.							
The sodium was added to water in a trough.							
he sodium:							
♦ floated							
 melted quickly to give a silvery ball 							
moved on the surface of the water							

♦ fizzed.

Use the information in the box to help you to answer these questions.

What evidence is there that:

(i) sodium has a low melting point

(ii) sodium is soft

(1)

(1)

(iii) a gas was produced?

Q14.

(a) Dimitri Mendeleev was one of the first chemists to classify the elements by arranging them in order of their atomic weights. His periodic table was published in 1869.

By unknown / неизвестен (here / здесь) [Public domain], via Wikimedia Commons

How did Mendeleev know that there must be undiscovered elements and how did he take this into account when he designed his periodic table?

(b) By the early 20th century protons and electrons had been discovered.

Describe how this discovery allowed chemists to place elements in their correct order and correct group.

- (c) The transition elements are a block of elements between Groups 2 and 3 of the periodic table.
 - (i) Transition elements have similar properties.

Explain why in terms of electronic structure.

(ii) There are **no** transition elements between the Group 2 element magnesium and the Group 3 element aluminium.

Explain why in terms of electronic structure.

(1) (Total 8 marks)

Q15.

(a) Use the periodic table on the Data Sheet to help you answer these questions.

Part of the periodic table is shown below.

The letters are **not** the symbols of the elements.

				Α						
в								С		
				D						
									Е	
							F			

Choose your answers **only** from the letters shown in the periodic table above.

Which letter, **A**, **B**, **C**, **D**, **E** or **F**, represents

(2)

(i)	hydrogen	Letter	
(ii)	a Group 3 element	Letter	(1)
			(1)
(iii)	a halogen	Letter	
			(1)
(iv)	the element with atomic (proton) number of 7	Letter	(1)
			(1)
(v)	an element with one electron in its outer shell?	Letter	

(b) The table shows the melting points of the Group 1 metals arranged in alphabetical order.

r

Group	1 metal	
Name	Symbol	Melting point in °C
Caesium	Cs	29
Francium	Fr	27
Lithium	Li	180
Potassium	К	64
Rubidium	Rb	39
Sodium	Na	98

_

(i) Arrange these metals in order of increasing melting point. Three have been

done for you.

Fr	Cs	 	 Li	
Lowest	t ——			► Highest

(ii) Use the periodic table on the Data Sheet **and** your answer in part (b)(i) above to complete this sentence about how the melting points change.

Going down Group 1, the melting points _____

(c) The transition metals are a block of elements between Groups 2 and 3 of the periodic table. Transition metals have different properties to Group 1 metals.

Put ticks (\checkmark) next to the **three** correct statements about transition metals in the table below.

Statement	(√)
They are harder than Group 1 metals	
They have lower densities than Group 1 metals	
They have higher melting points than Group 1 metals	
They are more reactive with water than Group 1 metals	
They often form coloured compounds but Group 1 compounds are usually white	

(1)

(1)

Q16.

Sodium is a Group 1 element.

(a) (i) A small piece of sodium is added to some water containing Universal Indicator solution.

Describe what you would see happening.

	Na	+ _	H₂O	→		+	H ₂
Fran	cium is th	ie most	reactive	element	in Group 1.		
Expla	ain why ir	terms	of electr	onic struc	ture.		
The 1	ransition	elemen	ts have	different p	properties f	rom the	elements in Group
	two of th	ese diff	erent pr	operties c	of transition	elemen	ts.
Give							
Give 1							
Give 1							

Q17.

The periodic table on the Data Sheet may help you to answer some of these questions.

- (a) Draw a ring around the correct answer to complete these sentences.
 - (i)

Dimitri Mendeleev attempted to classify

compounds.	
elements.	
mixtures.	

(ii)

He arranged them in order of their

atomic weight.

boiling point.

electrical conductivity.

(1)

(iii)

They are now arranged in order of their

atomic (proton) number. atomic weight. mass number.

(1)

- (b) In the periodic table between Groups 2 and 3 there is a block of metals which includes chromium, iron and nickel.
 - (i) Which **one** of the following is the correct name for this block of metals?

Draw a ring around the correct answer.

alkali metals	reactive metals	transition metals

(ii) The properties of iron and those of the Group 1 metal sodium are different.

Put a tick (v') next to the two correct phrases which could complete the following sentence.

Compared to sodium, iron

	(🗸)
has a higher melting point.	
has a lower density.	
is harder.	
is more reactive.	
is weaker.	

(2) (Total 6 marks)

Q18.

Read the information about the development of the periodic table and answer the

questions that follow:

Johann Döbereiner was a chemist who realised there was a link between atomic weight and chemical properties. Although it was difficult to measure atomic weights accurately, by 1829 Döbereiner had arranged many elements with similar chemical reactions in groups of three. He noticed that the middle element had an atomic weight that was approximately the average of the other two. These groupings were known as triads. Three of these triads are shown below:

Li 7	S 32	C1 35.5
Na 23	Se 79	Br 80
K 39	Te 128	I 127

As new elements were discovered, it became difficult to group them in triads, and it was left to others to build on Döbereiner's work. The result was the first periodic table, suggested by Dimitri Mendeleev in 1869.

Our modern periodic table has evolved from Mendeleev's Table. Lithium, sodium and potassium are still together in Group 1, and chlorine, bromine and iodine are in Group 7.

It was many years before chemists understood the nature of the transition elements.

The modern periodic table on the Data Sheet may help you to answer these questions.

(a) Döbereiner suggested that calcium (Ca), strontium (Sr) and barium (Ba) were also a triad.

Use relative atomic masses to explain why.

(b) Suggest why Döbereiner's ideas were replaced by those of Mendeleev.

(1)

(1)

(c) Lithium, sodium and potassium are in Group 1. All these elements react with water.
 Describe what you see when potassium is added to water.

- (d) In terms of electronic structure, explain why:
 - (i) elements in the same group of the periodic table have similar chemical properties (ii) transition elements have similar properties even though they are not in the same group (iii) in Group 1, lithium is less reactive than potassium. (Total 9 marks)

Q19.

The diagram shows a circuit that is used in a torch. Electrons flow through this circuit.

Why is copper used for the wire? (a)

(2)

(1)

(2)

(2)

(b) The diagram shows the structure of an atom of lithium.

Name the particle labelled Z.

- (1)
- (c) The table shows some properties of the metals used in the electrical circuit.

Metal	Melting point in °C	Boiling point in °C	Reaction with oxygen
Copper	1083	2582	Reacts slowly to form a thin oxide layer on surface
Lithium	179	1317	Reacts rapidly to form oxide
Tungsten	3370	5930	Reacts only when very hot to form oxide

(i) Use information from the table to suggest the order of reactivity for copper, lithium and tungsten.

most reactive	

least reactive

(2)

(1)

(ii) The filament wire glows because it gets very hot.

Use information from the table to suggest **one** reason why tungsten is used for the filament wire in the light bulb.

⁽d) The gas used in the light bulb is argon.

Draw a ring around the correct word in the box to complete the sentence.

Argon is used in the light bulb because it is

dense.
solid.
unreactive.

(1) (Total 6 marks)

Q20.

The periodic table on the Data Sheet may help you to answer these questions.

Draw a ring around the correct answer to complete these sentences.

(ii) The grid shows some statements about Group 7 elements.

Statement	(*)
They are metals	
They consist of molecules	
They have coloured vapours	
They have high melting points	

Tick (\checkmark) the **two** correct statements.

(b) The table gives information about some of the Group 7 elements.

Name of element	Melting point in °C	Boiling point in °C	Electronic structure		
Fluorine	-220	-188	2, 7		
Fluorine -220 -188 2, Chlorine -101 -35 2,8 Bromine -7 58 2,8		2, 8, 7			
Bromine	-7	58	2, 8, 18, 7		
lodine	114	183	2, 8, 18, 18, 7		

Use information from the table to help you to answer these questions.

Write the correct number in the box to complete the sentence.

- (i) All these elements are in Group 7 because they have electrons in their outer shell.
- (ii) Draw a ring around the correct word in the box to complete the sentence.
 - At 20 °C bromine is a liquid. solid.
- (iii) Use the periodic table on the **Data Sheet** to name the Group 7 element that is **not** shown in the table.

(2)

(1)

(1)

(c) A student investigated the reactivity of three Group 7 elements.

The student added:

- aqueous chlorine to potassium bromide and potassium iodide solutions
- aqueous bromine to potassium chloride and potassium iodide solutions
- aqueous iodine to potassium chloride and potassium bromide solutions.

The student's results are shown in the table.

Solutions of	Potassium chloride	Potassium bromide	Potassium iodide
Chlorine		Solution turned orange-brown	Solution turned brown
Bromine	No change		Solution turned brown
lodine	No change	No change	

Explain how these results show that chlorine is more reactive than bromine and iodine.

(2) (Total 8 marks)

Q22.

Chlorine and bromine are important Group 7 elements.

(a) Explain why chlorine is added to drinking water.

(1)

(1)

(b) Describe what you would **see** when bromine water is added to an unsaturated organic compound.

(c)	Bromine can be extracted from seawater. The dissolved bromide ions are reacted
	with chlorine. Bromine and chloride ions are formed.

(i) Complete and balance the equation below, which represents the reaction between chlorine and bromide ions.

(ii)	Describe what you see when chlorine is added to a solution containing bromide ions.
In ter	ms of electronic structure:
(i)	state why bromine and chlorine are both in Group 7
(ii)	explain why bromine is less reactive than chlorine.
What	is the result of adding acidified silver nitrate solution to a solution containing.
(i)	chloride ions
(ii)	bromide ions?
	In ter (i) (ii) What (i) (ii)

Q23.

Read the information about the periodic table.

In 1869 Dimitri Mendeleev classified the elements by first putting them in order of their atomic weights.

Then he arranged them in a table, so that elements with similar properties and reactions were in columns known as Groups.

He also left gaps in his table for undiscovered elements.

Use the modern periodic table on the Data Sheet to help you to answer these questions.

(a) Some elements were **not** placed in order of increasing atomic weights.

In terms of properties, suggest why potassium (atomic weight 39) should be placed after argon (atomic weight 40).

(b) Some scientists thought that Mendeleev's table was **not** correct.

Suggest why, by referring to the elements in Group 4.

(c) In the 1890s a new group of elements (Group 0) was discovered.

Suggest why they were easily fitted into Mendeleev's table.

(1) (Total 3 marks)

(1)

(1)

Q24.

(a) The periodic table on the Data Sheet may help you to answer this question.

Part of the periodic table is shown below.

]				ſ
					-			A	
B		 1 1	-	1	-	-	 С		
			D		-				
	E								T

Choose your answers **only** from the letters shown in the periodic table above. Which letter, **A** to **E**, represents:

(i) sodium

		Letter	(1)
(ii)	a non-metal		
		Letter	(1)
(iii)	a Group 2 element		(.)
		Letter	(1)
(iv)	a transition element?		(י)
		Letter	(1)
			(י)

- (b) Complete these sentences by drawing a ring around the correct answer.
 - (i) Attempts to classify the elements into a periodic table were made

hv	Arrhenius and Dalton Brønsted and Lowry	
	Mendeleev and Newlands	

(ii) They arranged the elements in order of their

atomic weight

melting point reactivity

(1)

(iv) We now know that elements in the same Group have the same number of

(1) (Total 8 marks)

Q25.

(iii)

Read the information about the periodic table.

if they had similar

When the Russian chemist Dimitri Mendeleev put forward his periodic table in 1869, the atomic structure of elements was unknown.

Mendeleev tried to arrange the elements in a meaningful way based on their chemical reactions. First he put the elements in order of their increasing atomic weight.

He then put elements with similar properties in the same column.

However, he left gaps, and sometimes did not follow the order of increasing atomic weight – for example, he placed iodine (atomic weight 127) after tellurium (atomic weight 128).

Within a few years there was sufficient evidence to prove that Mendeleev was correct.

Our modern periodic table has evolved from Mendeleev's table.

The modern periodic table on the Data Sheet may help you to answer these questions.

- (a) (i) State why Mendeleev left gaps.
 - (ii) State why some elements were **not** placed in order of increasing atomic weight.
- (b) (i) The periodic table is now based on atomic structure.

Explain how.

(ii) Suggest why it is impossible to have an undiscovered element that would fit between sodium and magnesium.

(3)

(1)

(c) Explain, in terms of electrons, why fluorine is the most reactive element in Group 7.

Q26.

(a) Read a student's report about the reaction between sodium and water.

Use the information from the student's report to answer these questions.

(i) Which information shows that sodium has a low density?

	(ii)	Which information	shows that the	reaction is	exothermic?
--	------	-------------------	----------------	-------------	-------------

- (iii) Name the gas given off.
- (b) The periodic table on the Data Sheet may help you to answer these questions.
 - (i) Sodium is in Group 1.

Name a Group 1 element that is more reactive than sodium.

(1)

(1)

(1)

(1)

(ii) Here are some statements about Group 1 elements.

Only two of these statements are correct.

Put a tick (\checkmark) next to the two correct statements.

Statement	(*)
They are halogens	
They are metals	
They form covalent compounds	
They form ions with a +1 charge	

(c) Dimitri Mendeleev put forward his periodic table in 1869.

(i)

Complete these sentences by drawing a ring around the correct answer.

atomic weight density reactivity

identical the same

(ii) The table is called a periodic table because elements with

Mendeleev arranged the elements in order of their

....

(2)

similar

(1)

(iii) The vertical columns are known as

properties occur at regular intervals.

groups
periods
rows

(1)

(d) How did Mendeleev overcome the problem of undiscovered elements when he designed his table?

(1) (Total 10 marks)

Q27.

The following article appeared recently in the Manchester Gazette.

Sodium Drum Blaze Scare

A 20 litre drum containing sodium burst into flames when it reacted violently with rainwater at a Manchester factory. It is believed that the sodium, which is normally stored under oil, had been accidentally left outside with the lid off.

A factory worker put out the blaze before the fire services arrived, and a leading fire fighter said, "It was fortunate that potassium wasn't involved as it would have reacted more violently and exploded. These Group 1 *alkali metals* can be very dangerous".

(a) Group 1 metals are stored under oil.

Suggest why.

(1)

(b) Balance the equation which represents the reaction between sodium and water.

 $Na \ + \ H_2O \ \rightarrow \ NaOH \ + \ H_2$

(1)

(c) Explain why the Group 1 metals are called the *alkali metals*.

(d) Explain, in terms of electrons, why potassium reacts more violently than sodium.

(Total 6 marks)

(3)

(1)

Q28.

Read the information about the development of the periodic table and answer the questions that follow.

Pd	Ag	Cd	U	Sn	Sb	Те
I	Cs	Ba, V	Та	W	Nb	Au
Pt, Ir	Os	Hg	TI	Pb	Bi	Th
However, other chemists did not accept Newlands' ideas. It was not until much later that his contribution to the development of the modern periodic table was recognised.						

Reproduced courtesy of the library and information centre Royal Society of Chemistry

The modern periodic table on the Data Sheet may help you to answer these questions.

(a) What is the modern symbol for the element 'Bo'?

1.

(b) Describe **one** piece of evidence to support the Law of Octaves.

- (c) Suggest two reasons why other chemists did not accept Newlands' ideas.
 - 2._____
- (d) The alkanes are a series of hydrocarbons with similar chemical properties. They have the general formula C_nH_{2n+2} .

Suggest why the alkanes do not appear in the periodic table.

(2)

(2)

Q29.

When electricity passes through a thin wire, the wire gets hot. If the wire gets very hot, it may glow. This idea is used in filament lamps.

(a) The table shows some metals and their melting points.

Metal	Melting point in °C
Aluminium	660
Copper	1084
Iron	1540
Tungsten	3410

Which metal in the table should be used to make the wire in a filament lamp?

Give a reason for your answer.

(b) The table shows some gases.

Gas
Argon
Carbon dioxide
Oxygen
Sulfur dioxide

(2)

Which gas in the table should be used in a filament lamp?

Give a reason for your answer.

(2) (Total 4 marks)

Q30.

The periodic table on the Data Sheet may help you to answer this question.

The diagram shows an outline of the periodic table.

						A					
							-			B	
											С
								D			
	Е										
				F						G	
н											

Choose your answers **only** from the letters shown on this outline table.

Which letter, A to H, represents an element which:

(a) is in Group 3,

4. \		Letter	(1)
(b)	is in Period 2,	Letter	(1)
(c)	is a transition element,		(1)
		Letter	(1)

(d) is the least reactive element in Group 7,

(e) is the most reactive metal?

Letter _____

(1) (Total 5 marks)

(1)

Q31.

The diagram shows an experiment to study the reaction of lithium with water.

(a) Describe, as fully as you can, what you would see as the lithium reacts with the water in this experiment.

To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

(b) The reaction has two products. Complete the word equation for this reaction by choosing the correct substances from the box.

hydrogen	lithium hydride	lithium hydroxide
lithium oxide		oxygen

lithium + water \rightarrow _____ + ____

(3)

(c) Caesium is lower down in Group 1 of the periodic table than lithium. Suggest how the reaction of caesium with water might be different from lithium's reaction.

(i) Describe fully how the melting points change as the atomic number increases.

(ii) Francium has an atomic number of 87.Use the graph to estimate the melting point of francium.

Estimate of melting point _____ °C

(1) (Total 9 marks)

Q32.

The table shown below was devised by John Newlands in 1864. He arranged the elements in order of their relative atomic masses. He found a repeating pattern, with elements having similar properties in the vertical columns (Groups). He called this pattern the 'Law of Octaves', because elements with similar properties seemed to be repeated every eighth element.

H	Li	Be	В	С	Ν	0
F	Na	Mg	Al	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co/Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce/La	Zr	Di/Mo	Ro/Ru
Pd	Ag	Cd	U	Sn	Sb	Те
	Cs	Ba/V	Та	W	Nb	Au
Pt/Ir	TI	Pb	Th	Hg	Bi	Os

 Many scientists were critical of Newlands' Law of Octaves. Suggest why other scientists were critical of the Law of Octaves. You should give examples from the table and use your knowledge of the chemistry of the elements.

(3)

(b) The diagram below shows a version of Mendeleev's Periodic Table of 1871. Mendeleev placed most of the elements in order of relative atomic mass.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
Period 1	Н							
Period 2	Li	Be	В	С	Ν	0	F	
Period 3	Na	Mg	Al	Si	P	ន	C1	
Period 4	K Cu	Ca Zn	??	Ti ?	V As	Cr Se	Mn Br	Fe Co Ni
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	? I	Ru Rh Pd

This table became accepted by other scientists.

Give two ways in which Mendeleev's table improved on Newlands' table.

1	 	
2	 	

(1)

(1)

Q33.

The periodic table on the Data Sheet may help you to answer this question.

(a) Newlands and Mendeleev both designed periodic tables in which the elements were put in the order of their relative atomic masses.

When the elements are put in this order a few of them are placed incorrectly when compared with a modern periodic table.

(i) Give **one** example of a pair of elements that would be placed incorrectly if they were in the order of their relative atomic masses.

and	

- (ii) Explain why placing these two elements in the order of their relative atomic masses would **not** be correct.
- (b) In the modern periodic table the elements are put in order of their atomic (proton) numbers.

Explain how the positions of the elements in the periodic table are linked to the electronic structure of their atoms.

(2) (Total 4 marks)

(1)

Q34.

The diagram shows an electric light bulb.

When electricity is passed through the tungsten filament it gets very hot and gives out light.

(a) What reaction would take place if the hot tungsten was surrounded by air?

(b) State why argon is used in the light bulb. Explain your answer in terms of the electronic structure of an argon atom.

Q35.

The diagram shows an outline of the periodic table.

					A					
									B	
С										D
			E							
							F			

Choose your answers **only** from the letters shown on the table above.

The periodic table on the Data Sheet may help you to answer this question.

Which element, A to F:

- (a) is in Group 3;
- (b) is a metal which floats on water and reacts violently to make an alkaline solution and hydrogen gas;

(1)

(1)

(c) is a gas which burns with a squeaky pop?

(1) (Total 3 marks)

Mark schemes

Q1.		
(a)	sodium has a lower density	1
	sodium is more reactive	1
(b)	hydrogen	1
(c)	OH-(aq)	1
Q2.		
(a)	(i) incorrect or no element = 0 marks	
	hydrogen	
	allow H/H_2	

[4]

1

1

1

1

all the other elements are metals allow hydrogen is a not an (alkali / group 1) metal ignore hydrogen is a gas

OR

copper (1) *allow Cu*

(copper) is not an alkali metal (1) allow Cu is a transition element / metal allow any valid specific chemical property eg Cu does not react with water ignore references to electronic structure ignore physical properties

- (ii) Group 0 / noble gases ignore Group 8
- (b) (i) scandium / gallium / germanium accept Sc / Ga / Ge allow Krypton / Kr
 - (ii) predicted they were metals

	allow atomic mass / weight	
	ignore atomic structure	
		1
	predicted their (chemical/physical) properties / reactivity	
	producted their (chemical/physical) properties / reactivity	
	allow similar properties if mentioned in context of a group	4
		I
(i)	(both) have <u>one</u> / <u>an</u> electron in the outer energy level / shell	
	ignore form single plus ions	
	с с ,	1
<i>/</i> ···		
(11)	accept shell for energy level	
	accept converse explanation for lithium	
	if 'outer' not mentioned, max 2 marks	
	ignore sodium reacts more easily	
	sodium loses one outer electron more easily (than lithium)	4
		1
	because outer electrons/energy level furth <u>er</u> from the nucleus in sodiul or because sodium has more shells (than lithium)	m
	do not account (more outer cholle)	
	allow sodium (atom) is larger	1
		1
	because forces/attraction to hold outer electron are weaker in sodium	
	(than lithium)	
	accept more shielding in sodium (than lithium)	
		1

Q3.

(c)

(a)	(i) nucleus		1
	(ii) protons		1
(b)	protons / + / positive		
	electrons / – / negative	aded in any order for 1 mark	
	both words nee		1
(c)	nitrogen allow N or N₂		
			1
(d)	B and C		

[10]

both letters needed in any order for **1** mark

allow Li **and** Na

(both) have one electron **or** same number of electrons in the outer energy level / shell

allow both are in Group **1** allow both are alkali metals allow both can lose <u>only</u> one electron **or** become +1 ions allow this mark if no letters given in boxes

[6]

1

1

1

1

1

1

1

1

Q4.

(a) because the nitrogen from dry air contained noble/Group 0 gases ignore other gases

or

(because the nitrogen from dry air) contained argon / krypton / xenon ignore helium and neon

and three / some of these gases, (argon, krypton, xenon) have a greater density than nitrogen

ignore helium and neon

or

and argon / krypton / xenon has a greater density than nitrogen

 (b) (i) carbon dioxide would form / is a solid accept carbon dioxide freezes or its freezing point is > – 200°C ignore melting point

or

(solid) carbon dioxide would block pipes

- (ii) helium (and) neon
 both needed for 1 mark
 accept He and Ne
- (iii) argon (and) oxygen accept Ar and O₂

because there is only a difference of 3°C in their boiling points accept because they have boiling points that are almost the same

Q5.

(a)	transition elements	1
(b)	These metals do not react with air	1
	These metals do not react with water	1

Q6.

(a)	all have seven electrons in their outer shell / energy level	1
(b)	must be comparative in all points or converse	
	chlorine atom is smaller than bromine atom	
	or chlorine atom has fewer shells than bromine atom	1
	outer shell / energy level of chlorine has stronger (electrostatic) attraction to the nucleus than bromine	
	or outer shell of chlorine is less shielded from the nucleus than bromine	1
	so chlorine more readily gains an extra electron	1 [4]

Q7.

- (a) any **two** from:
 - react with water or very reactive
 - (react with water) releasing gas / hydrogen / fizzing
 - (react with water) to form an alkaline / hydroxide solution
 - form ions with a <u>1+</u> charge allow lose one electron from the outer shell ignore other references to electronic structure ignore physical properties

[3]

2

- (b) any three from:
 - some boxes contain two elements allow specific examples: Co, Ni or Ce, La or Di, Mo or Ro, Ru or Ba, V or Pt, Ir
 - groups / columns contain elements with different properties allow groups / columns contain both metals and non-metals ignore examples
 - Newlands not a well-known / respected scientist ignore references to sugar factory
 - new idea (not readily accepted by other scientists)
 allow musical scales thought to be silly by some scientists
- (c) one for improvement **and** one for explanation from:
 - left gaps (for undiscovered elements) (1)
 - so that elements were in their correct group (1) allow so the elements fitted the pattern of properties

or

- did not always follow order of relative atomic weights / masses (1) ignore references to atomic number / electronic structure
- so that elements were in their correct group (1) allow so the elements fitted the pattern of properties

2

[7]

3

Q8. (a)

a)	(i)	В	1
	(ii)	E	1
	(iii)	F	1
	(iv)	D	1
	(v)	C	1
			-

(b) (i) Br do not accept BR or br or bR

		ignore numbers allow written in table if answer blank	
	(ii)	I Br Cl allow iodine, bromine, chlorine allow I,B,C allow capitals or lower case allow 184, 58, -34 ignore numbers	1
(c)	they	are halogens	1
	they	become less reactive down Group 7	1
Q9. (a)	(i)	a correct link between any two named elements eg same group / colur same properties / number of outer electrons allow some link between any two elements in the same group (in both Newlands and or the modern periodic table)	nn 1
	(ii)	 any two from: ignore statements about lack of evidence / proof elements still being discovered or no gaps for undiscovered elements some boxes have 2 elements in them metals and non-metals in same column / mixed up accept some elements in same column have different properties. allow any sensible suggestion about misplaced elements eg copper in group 1 elements pattern for first 16 or so elements only allow did not work for all elements 	2
(b)	(i)	Cl > Br > I accept reactivity / it decreases down the group	-

or

I < Br < Cl

1

[9]

		CI ha	s 2 reactions, Br has 1 reaction, I doesn't react owtte allow CI has most / more reactions and I has least / less reactions (must be clear about where Br fits in)	1
	(ii)	Br ₂	allow multiples / fractions if correctly completed and balanced	1
	(iii)	(they)	have <u>7 outer</u> electrons allow (they) have <u>7</u> electrons in highest occupied (energy) level / shells / rings	1
(c)			outer / last / final must be mentioned once in correct context, otherwise max 2 marks comparative required on all three points accept converse ie less reactive up group	
	dowr	n group	o (atom / elements) bigg <u>er</u>	
	or			
	outer	· electr	ons (level / shell /ring) furth <u>er</u> from nucleus / centre <i>ignore more electrons</i>	
	or			
	<u>more</u>	shells	; / level / rings do not accept more <u>outer</u> shells for this mark	1
	force	(s) / at	traction(s) are weak <u>er</u> allow electron(s) <u>attracted</u> less easily allow electron(s) less under influence (of nucleus)	
	or			
	more	shield	ling	
	or			1
	attrac	cts <u>les</u> s	<u>s</u> do not accept magnetic / gravitational / intermolecular forces	
	elect	ron(s)	<u>lost more</u> easily allow electron(s) more likely to be lost allow easier to give away	1

[10]

(a)	(i)	Sb	1
	(ii)	Se	1
	(iii)	Sn	1
	(;,)	C:	1
	(17)	51	1
(b)	(i)	elements	1
	(ii)	potassium (K)	1
	(iii)	0	1
011			
(a)	(i)	it = copper	
		(copper) stops barnacles / seaweed (sticking) accept lead doesn't stop barnacles / seaweed (sticking) ignore all other properties	1
	(ii)	it = Muntz Metal	
		(Muntz Metal) is less expensive / cheaper / cheapest must be a comparison accept copper is more expensive ignore other properties	1
(b)	(i)	atomic absorption spec(troscopy) / spectrometry or mass spec(trometry	') /
		spectroscopy accept spectroscopy / spectrometry alone allow AAS / MS do not allow NMR spectroscopy or IR spectrometry or chromatography	1
	(ii)	it = instrumental method	
		sensitive or detect (very) small amounts or only small sample needed	
		allow (more) precise	
		ignore accurate allow converse for chemical method	
		anow converse for chemical method ignore metal contains small amount / low concentration of	
		Shere metal contains officin anounty for concentration of	

[7]

iron

- (c) any **two** from: transition elements (= they)
 - unreactive / not very reactive allow does not corrode ignore reference to rust
 - strong / hard
 ignore tough / durable / hard wearing
 - malleable / easy to shape
 ignore ductile / density / melting point

Q12.

(a) Group O / 8 accept transition elements / metals

> or noble / rare / inert gases apply list principle

- (b) (chemically) similar elements (now) in the same group / column accept iodine has properties of Group 7 / halogens
 or iodine does not have group 6 properties
 or converse for tellurium
 ignore 'it fits the pattern' or any reference to proton / atomic numbers / atomic structure
- (c) any three from:

ignore not enough evidence / proof **or** Mendeleev not respected

- (some) boxes had <u>two</u> elements allow <u>two</u> correctly identified elements together (in the same box)
- Group 1: copper / silver unreactive (not like the others) allow copper / silver not alkali metals / Group 1
- there are non-metals and metals in the same group / box
 accept named examples
- Mendeleev left spaces / gaps
 accept (some chemists thought) there were no more
 elements to discover

[6]

1

2

1

1

- Medeleev reversed the order (for some elements)
- (d) any two from:

ignore mass number / atomic weight / neutrons throughout

- elements arranged in proton / atomic number order
 allow number of protons / electrons increases across period
- group: elements in same group / column have same number of outer electrons
- elements in same period / row have same number of (electron) shells / energy levels

allow number of (electron) shells / energy level increase down group allow <u>electron</u> rings allow orbits

Q13.

(a)	(i)	E	1
	(ii)	В	1
	(iii)	C	1
	(iv)	A	1
(b)	(i)	quickly melted allow melts in contact with water, allow bp 100 °C (of water) shows mp is low ignore one other piece of information	1
	(ii)	easily cut ignore one other piece of information	1
	(iii)	effervescence / fizzing / bubbling ignore named gas ignore one other piece of information	1

1

3

2

[7]

if placed consecutively, then elements would be in wrong group / have wrong properties / owtte allow some elements didn't fit pattern 1 (b) (elements placed in) atomic / proton number order 1 (elements in) same group have same number of outer electrons 1 any one from: number of protons = number of electrons reactions (chemical) properties depend on the (outer) electrons number of shells gives the period allow number of shells increases down the group 1 (c) (i) (transition elements usually) have same / similar number of outer / 4th shell electrons 1 inner (3rd) shell / energy level is being filled ignore shells overlap 1 (ii) 2nd shell / energy level can (only) have maximum of 8 electrons or <u>2nd</u> shell / energy level cannot have 18 electrons 1

Q15.

(a)	(i)	Α	1
	(ii)	F	1
	(iii)	Ε	1
	(iv)	C	1
	(v)	A or B	1
(b)	(i)	Rb K Na	1

[8]

(b) (I) RD K Na allow rubidium, potassium, sodium do **not** accept RB or NA

1

[10]

	(ii)	decrease	
	or		
	beco	ome lower / smaller / less allow from 180° C to 27° C	1
(c)	They	v are harder than Group 1 metals.	1
	They	have higher melting points than Group 1 metals.	1
	They	/ often form coloured compounds but Group 1 compounds are usually wh	nite. 1
Q16. (a)	(i)	UI / solution turns blue / purple allow violet / lilac	1
		any two from:	
		floats	
		melts / forms a sphere	
		 moves note: moves on surface = 2 marks (points 1 and 3) 	
		effervescence / fizz / bubbles / gas ignore the name of the gas	
		 (yellow) flame ignore sparks / ignites / burns allow dissolves 	
		 reduces in size ignore 'reacts violently' unqualified ignore reference to exothermic / heat evolved 	2
	(ii)	$\begin{array}{l} \textbf{2Na} + \textbf{2H}_2O \rightarrow \textbf{2NaOH} + \textbf{H}_2 \\ correct equation = \textbf{2} marks \\ allow correct multiples / fractions \\ if this equation is unbalanced, \\ allow \textbf{1} mark for NaOH \end{array}$	
(b)		it = francium	2

 \underline{outer} electron / shell / energy level must be mentioned once for all ${\bf 3}$ marks

		biggest atom or (outer) shell / energy level / electron furthest from nucl (number of) shells	eus or most
			1
		least attraction (to nucleus) or most shielding	
		do not allow less magnetic / gravitational attraction	
		de not allow less magnelle / gravitational all'addon	1
		(outer) electron more easily lost / taken	
		ignore francium reacts more easily / vigorously	1
	(c)	any two from:	
		ignore other properties / specific reactions	
		they / it = transition elements	
		transition elements:	
		allow if state group 1 elements	
		 high melting point or high boiling point 	
		low melting point or low boiling point	
		high density	
		low density	
		strong / hard	
		• weak / soft	
		not very reactive	
		reactive	
		catalysts	
		not catalysts	
		ions have different charges	
		• +1 ions	
		coloured compounds	
		white compounds	2
			2
Q1	7.		
	(a)	(i) elements	1
			1
		(ii) atomic weight	

[10]

1

		(iii)	atomic (proton) number	1
	(b)	(i)	transition metals	1
		(ii)	has a higher melting point is harder	2
Q1	8. (a)	40 (C	Ca) + 137 (Ba) \div 2 = 88.5	
			accept a recognition that the average is near 88 or it is the average of the other two accept Sr is midway between Ca and Ba	1
	(b)	eg ne apply	ewly discovered elements / atoms didn't fit (into triads) or didn't / to all elements / atoms or lot of exceptions he = Döbereiner ignore Mendeleev left spaces or not enough evidence	
	(c)	any t	wo from:	1
		•	fizzes / bubbles / gas hydrogen alone is insufficient ignore incorrect name if 'gas' stated	
		•	violent / vigorous / explodes / <u>very</u> fast reaction accept container explodes ignore strong reaction	
		•	floats / on surface ignore sinks	
		•	moves (very quickly)	
		•	melts (into a ball)	
		•	bursts into flame accept (bright) light ignore colour / glow	
		•	gets smaller / (reacts to) form a solution / dissolves / disappears etc	
		•	steam / gets hot (owtte) ignore alkaline solutions or change in colour etc	2
	(d)	(i)	same number of electrons in outer shell accept energy level for shell	

accept a correct reference to a specific group eg (all) have one electron in outershell / (all) lose one electron (when they react)

		1
(ii)	electrons fill an inner / 3 rd shell	
	accept energy level for shell	
	accept d-level being filled accept specific reference to 3rd shell	
	accept descriptions in terms of 3d & 4s etc	
		1
	(usually) same number of outer / 4 th shell electrons	
		1
(iii)		
	it = lithium	
	accept energy level for shell or converse reasoning for potassium	
	outer shell electron closer to nucleus	
	accept fewer shells / smaller atom	
		1
	more (electrostatic) attraction (to nucleus) / electrons less likely to be lost	
	accept less shielding / isn't much shielding	
	ignore nucleus has more influence but accept nucleus has more influence over the outer electron(s)	
	do not accept magnetic / gravitational attraction	
		1

Q19.

(a) conducts (electricity) **or** *accept flexible*

allows electrons / current to flow ignore conducts heat

- (b) electron
- (c) (i) lithium>copper>tungsten or

Li>Cu>W

all correct allow **1** mark for one metal in the correct position

(ii) has high / highest melting point

[9]

1

1

2

accept has high / highest boiling point

			or		
			can withstand the highest temperature	1	
	(d)	unre	eactive	-	
	()			1	[6]
Q2	20.				
	(a)	Mer	ndeleev	1	
	(b)	grou	ups	1	
	(\mathbf{c})	und	iccovered	1	
	(0)	unu	ISCOVERED	1	
	(d)	com	npound	1	
					[4]
02	21				
QZ	(a)	(i)	Halogens		
		(;;)	They experiet of molecules	1	
		(11)		1	
			They have coloured vapours	1	
	(b)	(i)	7 / seven	-	
	(~)	(-)		1	
		(ii)	liquid	1	
		(iii)	astatine		
			allow obvious mis-spelling		
			Ignore At	1	
	(c)	chlo	prine reacts with (the) bromide [owtte]	1	
		chl	aring reacts with (the) indide [owtte]	1	
		Crit	allow chlorine reacts with both		
			or		
			chlorine has more reactions for 2 marks or		

bromine reacts with one **and** iodine does not react at all for **2** marks

1

Q22.

(a)	kills	bacteria / sterilises (water)	
		allow kills microorganisms / microbes / germs	
		allow 'makes (water) safe (to drink)' or disinfectant	
		ignore cleans water or removes impurities / bacteria	
			1
(b)	goe	s colourless / decolourised (from red / red-brown / brown / yellow / orang	e)
	-	allow colour disappears	
		ignore 'goes clear' or discoloured	
		do not accept incorrect initial colour	
		do not accept precipitate	
			1
(c)	(i)	Br₂ and 2CI-	
. ,		allow multiples / fractions if whole equation balanced	
			1
	(ii)	changes to red / red-brown / brown / vellow / orange	
	()	do not accept effervescence / fizzing / precipitate / gas given	
		off	
		ignore vapour / temperature changes / ignore initial colour	
			1
(d)	(i)	7 <u>outer</u> electrons or	
		same number of <u>outer</u> electrons	
		allow energy level / orbit / ring for shell	
		allow 'need to gain 1 e ⁻ to have a full outer shell'	
		ignore 'similar number of outer electrons'	
			I
	(ii)	bromine / it (atom) is <u>bigger</u> or	
		must be a comparison	
		outor electrone (level / chell) further from puelous er more chelle	
		de not essent mere outer shelle	
		ianore more electrons	
		.g	
		forces / attractions are weaker or more shielding or attracts less	
		do not accept magnetic / gravitational / intermolecular forces allow 'electron(s) <u>attracted</u> less easily'	
		electron(s) gained <u>less</u> easily	
		"outer / last / final" must be mentioned once, otherwise max	
		2 marks.	
		accept converse for chlorine throughout where clearly stated	

				3	
	(e)	(i)	white precipitate or white solid		
			ignore names of chemicals	1	
		(ii)	cream precipitate or cream solid allow <u>pale</u> yellow / off-white precipitate / solid ignore names of chemicals	1	
					[10]
Q2	23.				
	(a)	pota	assium / it is an alkali metal or it is in group 1 or it is reactive <i>it = potassium</i>		
			allow argon is a noble gas / unreactive / group 0		
			ignore references to atomic structure		
			ignore references to correct physical properties	1	
	(b)	grou	up 4 / they are metals and non-metals		
		-	accept element missing or gap left		
			ignore differences in properties	1	
	(\mathbf{a})	:+ / +6	hav fitted at the beginning (and of the table		
	(C)	it / tr	ignore left gaps / spaces		
				1	
					[3]
02	24				
QZ		(a)	(i) B		
				1	
		(ii)	A		
				1	
		(iii)	E	1	
		(5.4)			
		(17)	D	1	
	(b)	(i)	Mendeleev and Newlands		
	(-)	()		1	
		(ii)	atomic weight		
				1	
		(iii)	chemical reactions	1	
				•	
		(IV)	electrons	1	

- (a) (i) undiscovered elements owtte
 - (ii) they would be in the wrong group / have the wrong / different properties / don't fit the pattern owtte allow atomic weights may have been wrong
- (b) (i) any **three** from:
 - elements arranged in proton / atomic number order
 ignore mass number / atomic weight / neutrons throughout
 - group: elements in the same group / column have same number of outer electrons owtte
 - group: number of shells increase down group
 - period: elements in the same period / row have the same number of shells / energy levels
 - period: number of protons / electrons increase across period
 - atomic number: link of atomic number to number of protons
 - atomic number gives number of electrons
 - (ii) it would mean splitting a proton / electron

or

implication of splitting proton / electron

(c) must be a comparison

(outer) electron closer (to nucleus) accept fewer (electron) shells / energy levels fluorine is the smaller/est

stronger/est attraction (to nucleus) owtte do **not** allow magnetic / intermolecular forces

or

less screening (by inner electrons)

electron gained more easily need some indication of <u>outer</u> electron shell somewhere in explanation otherwise max of **2** marks 1

3

1

1

1

1

Q26.				
(a	a)	(i)	floated / (moved on) surface accept does not sink ignore it melted	
		(ii)	melted / molten ignore heat is given off	1
		(iii)	hydrogen allow H₂	1
(b)	(i)	potassium / rubidium / caesium / francium accept: K / Rb / Cs / Fr	1
		(ii)	they are metals	1
			they form ions with a 1+ charge	1
(c	;)	(i)	atomic weight	1
		(ii) (iii)	groups	1
(d	d)	left g	aps owtte	1
				1

Q27.

(a)	acts as barrier between sodium and air / oxygen / water (vapour) accept because they are reactive ignore oil will not react
(b)	2 Na + 2 H ₂ O \rightarrow 2 NaOH + H ₂ allow multiples / fractions
(c)	these metals react with water producing an alkaline solution

[10]

1

1

or

produce solution with pH greater than 7 / high pH owtte allow produce OH. ions

	not these metals are / form alkalis	
	ignore 'strong' pH	1
	it = potassium	
	outer electron must be mentioned once for all 3 marks	
bigger ato	m	
or outer shell or	electron further from nucleus	
more shells	S	
	or converse argument for sodium less reactive provided sodium is specified	1
less attrac	tion to nucleus	
more shiel	ding	
	not less magnetic attraction	1
outer elect	tron more easily lost	
	ignore potassium reacts more easily	1
		1

Q28.

(a) B

(d)

(b) eg link between Li, Na, K, (Rb, Cs)

or Mg, Ca, (Sr, Ba)

or F, Cl, Br, I

allow any **two** elements in the same group (in both Newland's **and** the modern periodic table)

linked appropriate comment about that link eg similar physical / chemical properties **or** similar specific reactions **or** same number of outer electrons

if no elements identified, allow **1** mark for a general comment about elements **in the same column** having similar properties "every eighth element has similar properties" = **1** mark

1

1

1

[6]

- (c) any **two** from:
 - no gaps for undiscovered elements or elements still being discovered
 - some boxes have 2 elements

	 metals and non-metals in same column / mixed up / some elements in the same column had different properties 		
	pattern for first 16 or so elements only		
	 any sensible suggestion about misplaced elements eg copper in group 1 metals 	2	
(d)	alkanes are not elements or alkanes are compounds ignore molecule / molecular	1	[6]
Q29.			
(a)	tungsten	1	
	has the high(est) melting point accept that metals other than tungsten are likely to melt		
		1	
(b)	argon	1	
	is an unreactive gas accept that gases other than argon are reactive accept that argon is a noble gas or in Group 0	1	[4]
Q30.			
(a)	D	1	
(b)	В	1	
(c)	F	1	
(d)	G	1	
(e)	Н	1	[5]

Q31.

Quality of Written Communication The answer to this question requires ideas in good English in a sensible order with correct use of scientific terms. Quality of written communication should be

	considered in crediting points in the mark scheme. maximum 2 marks if ideas not well expressed	
	any three from: do not accept flames	
	floats	
	fizzes / bubbles or produces a gas ignore reference to heat	
	indicator goes blue / purple / violet (alkaline colour)	3
	water level in test tube goes down or gas fills the test tube	
	lithium 'dissolves' (owtte)	
	moves around (on surface of water)	
	steam	
(b)	lithium <u>hydroxide</u>	1
	hydrogen	1
(c)	more violent / reactive accept a description of the reaction which indicates greater violence	1
(d)	(i) decreases	1
	and then slows down or levels off	1
	(ii) 26(°C)	1
Q32.		
(a)	comment + relevant example gets 1 + 1 marks third marking point can be either a comment or an example unrelated to first comment i.e. 3 comments would be max 2 marks	max 3
	(could be many answers) ignore references to music	
	e.g. many elements in the groups have very dissimilar properties e.g. Cu + K (= 2 marks)	

[9]

two elements in one place on the table e.g. Ce or La (= 2 marks)

no clear division between metals and nonmetals **or** metals and non-metals jumbled / mixed up (could give example from table)

Newlands didn't allow spaces for new elements

(b) any two from:

elements with dissimilar properties are separated **or** grouped elements with similar properties

gaps left for elements to be added when discovered

relative atomic mass order not followed in all cases (so that elements go in groups with other similar elements) **or** Mendeleev in proton number order

groups related to electronic structure **or** group number equals number of outer electrons

new groups created **or** iron, cobalt nickel in a group **or** eight groups instead of seven

correct elements in periods 2 and 3

reactivity trends in groups or reactivity trends across periods

separates metals and non-metals

1

1

[5]

Q33.

- (a) (i) argon and potassium or tellurium and iodine or cobalt and nickel accept correct symbols allow argon and calcium
 - (ii) it would place them in incorrect <u>groups</u> (owtte) idea of <u>not</u> being placed with elements which have similar properties **or** converse argument accept would not have same number of electrons in outer shell allow it would put them in wrong period if linked to argon and potassium / calcium do **not** accept reasons based just on protons do **not** accept metals and non-metals mixed up
- (b) any **two** from:

- each successive atom has one more electron
- atoms in the same group have the same number of electrons in their <u>outer</u> shells / energy levels number of electrons in outer shell = group number
- across a period an energy level / shell is being filled
- in the next period the next energy level / shell is being filled accept period number = shell number

2

[4]

Q34.

react with oxygen / oxidise / burn in oxygen / burning / combustion or (a) tungsten to tungsten oxide or makes an oxide key idea is oxidation ignore breaking ignore fire / flames / exothermic ignore react with air 1 it is (very) unreactive / not reactive / inert / does not react with tungsten (b) or it is a noble gas or it is in group 0 or 8 or 18 do **not** accept unreactive / inert metal **or** argon is not very reactive 1 full outer shell (of electrons) / 8 electrons in outer shell 1 does not need to gain / lose / swap / transfer / share electrons or does not need to form bonds does not bond ionically / covalently 1

[4]

Q35.

(a)	F		
		accept indium / In	1
(b)	С		
		accept sodium / Na	1
(c)	А		
		accept hydrogen / H / H₂	1

[3]

(a) The bar graph shows the melting points of the elements in Group 7 plotted against their atomic numbers.

- (i) How do the melting points of the Group 7 elements change as the atomic number increases?
- (ii) The melting point of astatine (atomic number = 85) is not shown on the bar graph. Estimate the melting point of astatine.

(1)

(1)

(1)

Draw a bar for this value on the bar graph.

(b) The water from wells in Japan contains bromide ions.

Bromine is extracted from this water. The bromine is displaced by adding another Group 7 element.

(i) Place a tick (*) next to the name of **one** Group 7 element that could be used to displace bromine from this water.

		Group 7	(√)
Most r	eactive	Fluorine	
		Chlorine	
		Bromine	
		Iodine	
Least n	l eactive	Astatine	

(1)

(1)

- (ii) State why you have chosen this element.
- (iii) One sample of this water contained 2 g of bromine per litre of water.

How many litres of this water would be needed to make 1 kg of bromine? (1 kg = 1000 g)

_ litres

(1) (Total 6 marks)

Q2.

Mendeleev constructed a periodic table in 1869.

In his periodic table:

- most of the elements were put in order of increasing relative atomic mass;
- elements with similar properties were put into groups;
- Mendeleev changed the order of some elements to put them with similar elements;
- spaces were left for elements that Mendeleev thought would be discovered in the future.

One space was in Group 3 between the elements aluminium and indium.

Boron
Aluminium
?
Indium
Thallium

Mendeleev called this undiscovered element 'eka-aluminium'. This element is now known as gallium. In 1871, he also predicted some of the properties of gallium.

The table shows the properties of aluminium and indium, along with some of the predictions made by Mendeleev for gallium.

	Appearance	Metal or non-metal	Boiling point in °C	Density in g per cm3	Relative atomic mass
Aluminium	silvery white	metal	2467	2.7	27
Predicted properties of gallium	silvery white	metal	?	?	68
Indium	silvery white	metal	2080	7.31	115

(i) Suggest **two** reasons why other scientists in 1871 did not accept Mendeleev's periodic table.

Reason 1 _____ Reason 2 _____ (2)

(ii) Suggest why the discovery of gallium in 1875 convinced other scientists that Mendeleev's table was correct.

(1) (Total 3 marks)

Element	Atomic number	Melting point in °C	
Fluorine	9	-220	
Chlorine	17	-101	
Bromine	35	-7	
lodine	53	114	
Astatine	85	?	

(a) The table gives the melting points of some of the elements of Group 7.

(ii) Estimate the melting point of astatine. _____ °C

(2)

(1)

(iii) Which of the Group 7 elements are solids at 20 °C?

(b) (i) Draw a diagram to show the arrangement of electrons in an atom of fluorine.

(ii) The elements of Group 7 have similar chemical properties. Explain, in terms of electrons, why they have similar chemical properties. (1) Xenon is a very unreactive element. (i) Explain, in terms of electrons, why xenon is so unreactive. (2) (ii) Fluorine reacts with xenon but iodine does not. Explain, in terms of atomic structure, why fluorine is more reactive than iodine.

(c)

(1)

(1)

(Total 11 marks)

Q4.

The diagrams show the electronic arrangement of the atoms of two elements.

(i) Name the part of the atoms labelled **X**.

(ii) Why are these two elements in the same group of the Periodic Table?

(1) (Total 2 marks)

(1)

Q5.

Fluorine is more reactive than chlorine. Fluorine reacts with most elements in the Periodic Table. However, fluorine does not react with argon.

Atomic numbers: F 9; Cl 17; Ar 18.

(a) To which group of the Periodic Table do fluorine and chlorine belong?

(1)

(1)

- (b) (i) Give **one** use for argon.
 - (ii) Explain why the noble gas argon is unreactive.

- (c) (i) Give **one** use for chlorine.
 - (ii) Draw the electron arrangement of a chlorine atom.

(iii) Explain why fluorine is more reactive than chlorine.

(3) (Total 10 marks)

Q6.

The diagram shows a light bulb.

(2)

(1)

(2)

(a) (i) An argon atom has the structure shown. Use the words in the box to label the particles in the atom. Each word should only be used **once.**

- (ii) Argon is unreactive. Why?
- (b) Oxygen would **not** be a suitable gas to use in a light bulb. Explain why.

(2) (Total 5 marks)

(2)

(1)

Q7.

Lithium is a very reactive metal.

(a) Lithium reacts with cold water.

		Lithium	
		Water with universal indicator solution	
	(i)	Which physical property of lithium is seen during this reaction?	
	(ii)	Which chemical property of lithium will be shown by the universal indicator?	(1)
			(1)
(b)	Com	nplete the sentence by writing in the missing numbers.	
	Lithi	ium has an atomic number of 3 and a mass number of 7.	
	This	means that an atom of lithium has protons electrons	
	and	neutrons.	
		(Total 5 ma	(3) arks)

Q8.

The elements in Mendeleev's periodic table were arranged in order of increasing atomic mass. Part of the modem Periodic Table is shown.

		_					ŀ	ł								He
Li	Be •										в	С	, N	0	F	Ne 19
Na	Mg									 	Al	Si 14	ЪЪ	S 11	C1 17	Ar ∎
K	Ca				I	Î		I	I							

(a) Complete the sentence by writing in the missing words.

The modem Periodic Table is arranged in order of increasing

_ •

(b) (i) Name a metal in the same group as lithium.

(ii) Name a non-metal in the same period as magnesium.

Q9.

This question is about the Periodic Table.

- (a) Dimitri Mendeleev was a Russian scientist who, in 1869, helped to develop the Periodic Table. He made his table with the known elements arranged in order of increasing atomic mass. He started new rows so that elements with similar chemical properties would be in the same column. Mendeleev sometimes had to leave gaps in his table.
 - (i) Complete the sentences.

The Periodic Table is now the arrangement of the elements in order

of increasing atomic ______. The rows are called ______

and the columns are called	
----------------------------	--

- (ii) Suggest why Mendeleev had to leave gaps in his table.
- (b) This section of the Periodic Table shows the positions of some elements.

				Η					He
Li								F	Ne
Na								ũ	Ar
К									

(i) Give the chemical symbol for **one** of the noble gases.

(1)

(1)

(1)

(Total 3 marks)

(3)

(1)

⁽ii) Draw the arrangement of electrons around the nucleus for the noble gas that you chose in (i).

Q10.

The Periodic Table contains groups of elements that have similar chemical properties.

- (a) The halogens are in Group 7 of the Periodic Table.
 - (i) Complete the table. Iodine has been done for you.

Halogen	Colour of vapour
---------	------------------

chlorine	
	red-brown
iodine	purple

(ii) Why do the halogens have similar chemical properties?

(b) The alkali metals are in Group 1 of the Periodic Table. State what is formed when any alkali metal reacts with water.

Q11.

Fluorine is a very useful element. It is placed in group 7 of the Periodic Table.

Use your knowledge of the elements in group 7 to help you answer these questions. You may find that information in the Data Sheet may help you with this question.

(a) Name another element in group 7 of the Periodic Table.

(1)

(b) Cylinders filled with fluorine molecules are commercially available. What would you expect the formula of a fluorine molecule to be?

(1)

(c) Fluoride ions are added to drinking water to help prevent tooth decay. What is the charge on fluoride ions in the water?

(1)

(d) Fluorine reacts with the non-metal sulphur to make sulphur hexafluoride (SF₆).

(2)

(1)

(i) What type of bonding would you expect in sulphur hexafluoride?

(ii) Explain the reason for your answer to part (i).

(1) (Total 5 marks)

(1)

Q12.

Silicon is an extremely important element. More than a million tonnes of silicon are produced each year. Silicon is made by reducing silicon oxide (sand) with carbon (coke).

(a) (i) Complete the diagram below to show the arrangement of electrons in an atom of silicon. The Data Sheet may help you with this question.

(ii) Which electrons in the silicon atom take part in chemical reactions with other atoms?

(1)

(2)

(iii) What features of all the atoms of the elements in group 4 of the Periodic Table might give them similar chemical properties?

(1)

- (b) Silicon is difficult to classify as a metal or a non-metal because it has properties which resemble both. Some of the properties of silicon are listed below.
 - Silicon is a shiny blue/grey solid.
 - Silicon is placed in Group 4 of the Periodic Table.
 - Silicon has a relative atomic mass of 28.

- Silicon has a very high melting point (1410°C).
 - Silicon has a very high boiling point (2355°C).
- Silicon conducts electricity.

•

- Silicon oxide will neutralise alkalis.
- Silicon forms compounds in which the silicon atoms are bonded to other atoms by covalent bonds.
- (i) Select **two** properties from the list above in which silicon resembles a metal.

1.			
-			
2.			

(ii) Select **two** properties from the list above in which silicon resembles a nonmetal.

1	
2	
	(2)

(Total 8 marks)

(2)

Q13.

Fluorine is the most reactive element in group 7 of the Periodic Table. Fluorine reacts with all the other elements in the Periodic Table except some of the noble gases. It does not react with helium, neon and argon, but it does react with xenon. Many substances burst into flames when exposed to fluorine.

(a) (i) The electronic structure of chlorine is 2.8.7. What is the electronic structure of fluorine?

(1)

(ii) What is the electronic structure of the chloride ion Cl-?

(1)

(4)

(iii) Explain why fluorine is more reactive than chlorine.

(b) (i) What does the information at the start of this question suggest about the

reactivity of the elements in group 0?

(1) (ii) A chemist did an experiment to find out if fluorine reacts with xenon. The two gases were mixed in a glass container. The only product detected was silicon fluoride. Explain what happened. (2) (iii) The experiment was repeated many years later but the gases were mixed in a different type of container. A white solid was obtained which was xenon fluoride. Predict whether you think (1) krypton and (2) radon will react with fluorine. Explain the reasons for your predictions. (5) (Total 14 marks)

Q14.

Use the Periodic Table on the Data Sheet to help you to answer this question.

(a) State **one** similarity and **one** difference in the electronic structure of the elements:

(2)

(i) across the Period from sodium to argon;

(ii) down Group 7 from fluorine to astatine.

(b) (i) State the trend in reactivity of the Group 1 eleme	ents.
--	-------

Explain this trend in terms of atomic structure.

(1)

(2)

(3)

(c) Hydrogen is an element which is difficult to fit into a suitable position in the Periodic Table. Give reasons why hydrogen could be placed in either Group 1 or Group 7.

(3) (Total 11 marks)

Q15.

(ii)

Read the following information about an element X.

The element X melts above 600°C. It conducts electricity at room temperature. It burns in oxygen to form an oxide. When the oxide is mixed with water it turns Universal Indicator blue.

The oxide of X is a white solid at room temperature. It has the formula XO and contains the ion X^{2+} .

The element X reacts with chlorine to form a chloride with a high melting point. The chloride conducts electricity when molten and it is soluble in water.

From the information give three pieces of evidence which suggest that X is a meta
1
2
3
In which Group of the Periodic Table should X be placed? Give a reason for your answer.
Group
Reason
Predict the formula for the chloride of X.
(Total
Why do the elements in Group 1 of the Periodic Table have similar chemical properties?
Explain why the reactivity of the elements in Group 1 increases down the group.

Q17.

Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride.

(a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.

(1)

- (b) Use the Data Sheet to help you to answer this question.
 - (i) Write the chemical formula of magnesium chloride.

(1)

(ii) Name the type of bonding in magnesium chloride.

(1) (Total 3 marks)

Q18.

X is an element with the following properties:

- melts at –220°C and boils at –188°C;
- does not conduct electricity at room temperature;
- forms molecular compounds with non-metals;
- forms ionic salts with metals in which its ion has a 1-charge.
- (a) Would you expect X to be a solid, a liquid or a gas at 20°C?
- (b) Predict the formula of the product formed when X reacts with aluminium. (The aluminium ion is Al³⁺ and the X ion is X⁻.) Select your answer from the list below.

 $\label{eq:alpha} \mathsf{AIX} \qquad \mathsf{AIX}_2 \qquad \mathsf{AIX}_3 \qquad \mathsf{AI}_3 \mathsf{X} \qquad \mathsf{AI}_2 \mathsf{X}_3$

Predicted formula _____

(c) To which Group of the Periodic Table does the element X belong?

(1)

(1)

(1) (Total 3 marks)

Q19.

Sodium and potassium are both in Group 1 of the Periodic Table.

- (a) Explain, by reference to their electronic structures, why both elements are placed in Group 1.
- (1) (b) Use the Data Sheet to help you to answer this question. The diagrams below represent the electronic structures of some atoms and ions. B С А D F E Which one of the structures, A - F (i) represents a sodium atom, _____ (1) represents a potassium **ion**? _____ (ii) (1) (c) Sodium and potassium both react with cold water. (i) The word equation represents the reaction of sodium with water. sodium + water \rightarrow sodium hydroxide + hydrogen Complete and balance the symbol equation for this reaction. + _____ \rightarrow 2NaOH + _____ (2) How does the reactivity of potassium with water differ from that of sodium (ii) with water?

Explain this difference in reactivity by reference to the electronic structures of the potassium and sodium atoms.

Q20.

One definition of an element is:

"A substance that cannot be broken down into simpler substances by chemical methods"

The table below shows some of the 'substances' which Antoine Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789.

The modern names of some of the 'su	substances' are given in brackets.
-------------------------------------	------------------------------------

ACID-MAKING ELEMENTS	GAS-LIKE ELEMENTS	MET ELEN	ALLIC MENTS	EARTHY ELEMENTS
sulphur	light	cobalt	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	nickel	magnesia (magnesium oxide)
charcoal (carbon)	oxygen	gold	platina (platinum)	barytes (barium sulphate)
	azote (nitrogen)	iron	silver	argilla (aluminium oxide)
	hydrogen	lead	tin	silex (silicon dioxide)
		magnese	tungsten	
		zinc		

Dmitri Mendeleev devised a Periodic Table of the elements in 1869. A modern version of this table is shown on the Data Sheet.

Give two ways in which Mendeleev's table is more useful than Lavoisier's.

1	
2	
	(Total 2 marks)

Q21.

Use the Data Sheet to help you answer this question.

When sodium reacts with water it forms sodium ions. The diagrams below represent the electron arrangements of some atoms and ions.

Which of the diagrams, **A** to **E**, represents the electron arrangement of each of the following?

- (i) A sodium atom, Na _____
- (ii) A sodium ion, Na⁺_____

(Total 2 marks)

Q22.

Part of the Periodic Table which Mendeleev published in 1869 is shown below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1 H							
Period 2	Period 2 Li Be B C		N	0	F		
Period 3	Na	Mg	Al	Si	Р	S	C1
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	* I

Use the Data Sheet to help you to answer this question.

Give the symbols of two elements in Group 1 of Mendeleev's Periodic Table (a) (i) which are **not** found in Group 1 of the modern Periodic Table.

	and		
(ii)	Name these two elements.		
	and		
Whic able	h group of elements in the modern Periodic Tal ?	ble is miss	ing on Mendeleev's
Menc aster Sugg	deleev left several gaps in his Periodic Table. T isks(*) on the table above. lest why Mendeleev left these gaps.	hese gaps	are shown as
Com	plete the following sentence.		
n the	e modern Periodic Table the elements are arra	nged in the	e order of their
	numbers.		
Meno This Some Four prope	deleev placed lithium, sodium and potassium in was because they have similar properties. e properties of elements are given in the table. of them are properties of lithium, sodium and p erties has been ticked for you. Place a tick next	Group 1 c ootassium. to the oth	of his Periodic Table. One of these er three properties.
	PROPERTY		
Th	ey react with water to give alkaline solutions.		
Th	ey are gases.]
Th	ey are non-metals.]
Th	ey form an ion with a 1+ charge.]
Th	ey react with water and give off hydrogen.	×]

They form an ion with a 1– charge.	
They are metals.	
They react with water to give acidic solutions.	

(f) What happens when a small piece of sodium reacts with water? You should describe what you would see and state what substances are formed.

> (3) (Total 12 marks)

(3)

Q23.

Part of the Periodic Table which Mendeleev published in 1869 is shown below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1 H							
Period 2	Li	Be	В	С	И	0	F
Period 3	Na	Mg	Al	Si	Р	S	C1
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	* I

Use the Data Sheet to help you to answer this question.

(a) Name **two** elements in Group 1 of Mendeleev's Periodic Table which are not found in Group 1 of the modern Periodic Table.

_____ and ___

(2)

(b) Which group of elements in the modern Periodic Table is missing on Mendeleev's

F,
EXAM PAPERS PRACTICE

Mendeleev left several gaps in his Periodic Table. These gaps are shown as asterisks(*) on the table above. Suggest why Mendeleev left these gaps.
Complete the following sentence.
In the modern Periodic Table the elements are arranged in the order of their
numbers.
(Total 5 m

Q24.

- (a) What is the name given to the block of elements in the middle of the Periodic Table which includes vanadium?
- (b) Some of the properties of vanadium are shown in this list.
 - It has a high melting point.
 - It is a solid at room temperature.
 - It is a conductor of electricity.
 - It is a good conductor of heat.
 - It forms coloured compounds.
 - If forms crystalline compounds.
 - It forms compounds that are catalysts.

Select two properties, from the list above, which are not typical of a Group 1 metal.

- 1._____
- 2._____

(1)

Q25.

In sea water the bromine is present as bromide ions (Br-). The equation below shows how chlorine can be used to displace bromine from sea water.

 $CI_{2(g)}$ + $2Br^{-}(aq) \rightarrow Br_{2(g)}$ + $2CI^{-}(aq)$

Explain, as fully as you can, why chlorine can displace bromine from sea water. To obtain full marks your answer should refer to electronic structure.

(Total 3 marks)

Q26.

The graph shows the melting point of four elements in Group 7 of the periodic table.

(a) What is the melting point of fluorine?

(1)

Which element is solid at room temperature? Look at the periodic table on the Data Sheet. Using data from the graph, describe the trend of melting points of the elements i Group 7.	Room temperature is 20°C.	
Look at the periodic table on the Data Sheet. Using data from the graph, describe the trend of melting points of the elements i Group 7. The elements in Group 7 are non-metals. Which two of the following are properties of non-metals? Place a tick (<') in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point	Which element is solid at ro	om temperature?
Using data from the graph, describe the trend of melting points of the elements i Group 7.	Look at the periodic table or	the Data Sheet.
The elements in Group 7 are non-metals. Which two of the following are properties of non-metals? Place a tick (*') in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point Poor conductor of electricity	Using data from the graph, Group 7.	describe the trend of melting points of the elements in
The elements in Group 7 are non-metals. Which two of the following are properties of non-metals? Place a tick (*') in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point Poor conductor of electricity		
The elements in Group 7 are non-metals. Which two of the following are properties of non-metals? Place a tick (<) in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point Poor conductor of electricity		
Which two of the following are properties of non-metals? Place a tick (*) in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point Poor conductor of electricity	The elements in Group 7 are	e non-metals.
Place a tick (*) in the box against each correct property. Brittle (if solid) Good conductor of heat High boiling point Poor conductor of electricity	Which two of the following a	are properties of non-metals?
Brittle (if solid)Good conductor of heatHigh boiling pointPoor conductor of electricity	Place a tick (\checkmark) in the box a	against each correct property.
Good conductor of heatHigh boiling pointPoor conductor of electricity	Brittle (if solid)	
High boiling point	Good conductor of heat	
Poor conductor of electricity	High boiling point	
	Poor conductor of electricity	
(Tota		(Total

Q27.

The elements in Group 1 are known as the alkali metals.

Which three of the following are properties of alkali metals?

Place a tick (\mathbf{v}) in the box against each correct property.

Hard, tough and strong

Low density

1
1
1
1
1

Form hydroxides that dissolve in water	
React quickly with water	
Used as catalysts	
Used to make electric cables	

(Total 3 marks)

Q28.

Use the periodic table on the Data Sheet to answer these questions.

The table below gives the electronic structures of four elements, W, X, Y and Z.

Element	Electronic structure
W	2,5
x	2,7
Y	2,8,8
Z	2,8,8,1

(a) Which element **W**, **X**, **Y** or **Z**:

- (i) is a Group 0 gas? _____
- (ii) is nitrogen? _____
- (iii) is a Group 7 gas? _____
- (iv) reacts violently with water? _____

(b) Which two Groups of the periodic table do not contain any non-metals?

(1) (Total 4 marks)

(3)

Q29.

Beryllium and calcium are metals in Group 2 of the periodic table.

The diagrams show their electronic structures.

(a) Why do beryllium and calcium have similar chemical properties?

(1) (b) Calcium is more reactive than beryllium. Suggest an explanation for this in terms of the electronic structure of the two elements. (2) (Total 3 marks)

Q30.

(a) Helium is used to fill party balloons.

Which two of the following are properties that make helium suitable for filling party balloons?

Place a tick (\mathbf{v}') in the box against each suitable property.

Coloured

Exists as individual atoms

Less dense than air

Very unreactive

]
	1

(b) The table shows the names of some gases.

Use the correct formulae from the box to complete the table. The first one has been done for you.

CH ₄	CO_2	H ₂	Н	ICI	NH₃	O ₂
		Gas		For	mula	
	Oxyger)		(O ₂	
	Carbon	dioxide				
	Hydrog	en chlorid	le			
	Ammor	nia				

Q31.

Use the Periodic Table of Elements on the Data Sheet to help you to answer this question.

Francium (Fr) is a very rare element. It is estimated that there is only 25 g of francium in the Earth's crust. Francium is radioactive and has a half-life of only a few minutes.

Mendeleev predicted the existence of francium in the 1870s but the element was not discovered until 1939.

(a) Explain why Mendeleev was able to predict the existence of francium in the 1870s.

(2)

(b) Suggest why there is not much experimental evidence for the properties of francium.

⁽³⁾ (Total 5 marks)

(c)	(i)	If you could react francium with water, how would the reaction compare with that of sodium with water?
	(ii)	Explain the reason for your answer.
32.	thong	priodic table on the Data Shoet to help you to answer these questions
(a)	Write	e the symbol for helium.
(b)	Write	e the name of an element in Group 4.
(c)	Write	
		the name of the element which has a relative atomic mass of 64.
(d)	Write (tellu	e the name of the element which has a relative atomic mass of 64.

Q33.

The diagram shows an atom.

- (a) On the diagram, write the names of structures **A**, **B**, **C** and **D**.
- (b) To which Group of the periodic table does this atom belong?

Give one reason for your answer.

(c) Name the element which is made up of this type of atom.

(1) (Total 7 marks)

(4)

(2)

Q34.

The table shows some properties of four Group 7 elements.

			State at	Reaction with	hydrogen
Element	Boiling point in ⁰C	Melting point in ºC	room temperatur e	Description	Product
Fluorine	- 218	- 188	gas	Explosive reaction in dim light	Hydrogen fluoride
Chlorine	- 34	- 101	gas	Explosive reaction in	Hydrogen chloride

			sunlight	
Bromine	+ 59	- 7	Reacts if heated	
lodine	+ 185	+ 114	Reacts if heated strongly	Hydrogen iodide

(a) What is the state at room temperature of:

- (i) bromine; _____
- (ii) iodine?_____

(b) Which one of the four elements is most reactive?

(c) Name the compound formed when hydrogen reacts with bromine.

(1) (Total 4 marks)

(2)

(1)

Q35.

The table shows how Group 7 elements react with hydrogen.

	Reaction with hydrogen		
Element	Description	Product	
Fluorine	Explosive reaction in dim light	Hydrogen fluoride	
Chlorine	Explosive reaction in sunlight	Hydrogen chloride	
Bromine	Reacts if heated	Hydrogen bromide	
lodine	Reacts if heated strongly	Hydrogen iodine	

Explain the difference in the rates of the reaction of fluorine with hydrogen and of iodine with hydrogen.

(Total 2 marks)

1

1

1

1

1

1

[6]

Mark schemes

Q1.

(a)	(i)	melting point increases as atomic number increases	
		accept 'increase' / higher / bigger / larger	

(ii) 200 to 350 °C

exactly on 85 ± $\frac{1}{2}$ square up to their value ± $\frac{1}{2}$ square

(b) (i) chlorine **or** fluorine accept if both chlorine and fluorine ticked, otherwise list principle

 (ii) chlorine / fluorine are more reactive (than bromine) accept chlorine / fluorine are higher (up group 7) accept a more reactive halogen will displace a less reactive halogen

(iii) 500 (litres)

Q2.

- (i) any **two** sensible ideas such as:
 - (why) put in order of mass
 accept other equally valid orders, eg alphabetical
 - he left gaps **or** table not complete

 - he changed the order of some elements or there were exceptions to the rule(s)
 - he put metals and non-metals together
 accept they didn't like his groupings / groups

- he did not explain his ideas clearly (owtte) do not accept modern explanations, eg proton number etc
 2
- (ii) (the properties of gallium) fitted the predictions (owtte) or predictions were correct or (properties) would make it fit in the gap or (properties) would make it fit in group 3

do **not** accept gallium fitted his theory accept finding gallium proved there were new elements to be discovered

[3]

1

1

Q3.

- all points plotted to ± 2 square (a) (i) 1 sensible line of best fit extended could be curve must not join dots, ie zig zag if they draw 2 lines then lose second mark, but can still gain marks in (a)(ii) 1 (ii) as read from their graph $\pm \frac{1}{2}$ square 1 (iii) iodine and astatinel/I2 At/At2 must give both 1 1
- (b) (i)

ignore symbol ignore nucleus / lack of nucleus accept dots / crosses etc / e / e⁻ **not** 2.7 alone

(ii) same number of electrons in <u>outer</u> shell or

		seven electrons in <u>outer</u> shell (owtte) accept missing one electron in <u>outer</u> shell / energy level / orbit accept trying to gain one electron accept they all form 1 ⁻ ions do not accept orbital / rings	1
(c)	(i)	8 electrons in outer shell or full outer shell / energy level	1
		does not need to lose / gain / share electrons or don't need to form accept don't bond ionically or covalently they do not react is not enough	ponds
	(ii)	fluorine atom is smaller / fewer shells (owtte) or outer shell closer	I
		to nucleus accept answers argued in terms of iodine	1
		more strongly attracted (to nucleus) or less shielding accept holds electrons tighter (to the nucleus)	1
		gains electron(s) <u>more</u> easily accept easier to gain electrons	1
Q4. (i)	nucle	eus	
(ii)	they	both have seven electrons in the outer shell accept they both have the same number of electrons in the outer shell both need one electron to make full outer shell	1
Q5. (a)	grou	p seven/7VII	
(b)	(i)	accept halogens in light bulbs /lasers accept any other specified use as an inert atmosphere e.g. (argon)	1

[11]

[2]

		welding, storing explosives, fluorescent lights	1
	(ii)	2.8.8/has a full/8 in/outer shell	1
		electrons accept does not need to share/gain/lose electrons	1
(c)	(i)	any one from:	
		disinfectant	
		bleaching agent	
		sterilising water/kills bacteria	
		manufacture of HCI	
		water treatment	1
		<i>not:</i> cleaning/in pools purification of water kills germs warfare antiseptic	-
	(ii)	inner shells 2,8	1
		outer shell 7	1
	(iii)	fluorine:	
		accept the converse reasons for chlorine	
		gains one /an electron easier/is more	
		strongly attracted <i>not</i> more strongly held	1
		less shielding of nucleus by inner electron shells	1
		less distance from (attraction of)	
		nucleus/less shells	1

Q6.

(a) (i) **all** correct **two** marks **one or two** correct **one** mark

electron

[10]

	proton neutron	2
	(ii) (argon has) a full outer shell (of electrons) accept energy level for shell	
	accept does not lose or gain electrons	
	do not accept does not form bonds	
	or react or is a noble or inert gas	1
		1
(b)	oxygen would react (with metal)	
	accept oxygen is reactive	
	do not accept metal would react (neutral)	1
	metal would burn	
	accept metal would be 'destroyed'	
	or metal oxide formed or metal is oxidised	
	do not accept it would explode or	
	would not last long	
	accept mament for metal	1
Q7.		
(a)	(i) low density	
	accept floats (on water)	
		1
	(ii) forms an alkaline solution with water	
	accept <u>alkali</u> (metal) or basic	
	do not accept group 1 metal	
		1
(b)	3 or three (protons)	
		1
	3 or three (electrons)	
		1
	4 or four (neutrons)	
		1
Q8.		
(a)	atomic number or proton number	
		1
(b)	(i) sodium or potassium must be name	
	accept rubidium or caesium or francium	
		1

[5]

[5]

(ii) silicon or phosphorus or sulphur or chlorine or argon must be name

[3]

1

Q9.

(a)	(i)	number	1
		pariada	1
		pendas	1
		groups	1
	(ii)	some elements (or metals) had not been isolated accept some elements (or metals) had not been discovered (found) do not accept matching properties do not accept some elements were not known	1
(b)	(i)	He or Ne or Ar	
		accept Kr or Xe or Rn	
		accept correct names	1
	(ii)	arrangement of electrons correct accept He 2 Ne 2 . 8 Ar 2 . 8 . 8 arrangement of electrons must match correct answer if given in (i) do not accept other elements	1
	(iii)	 (all) have one electron in the outer shell or energy level accept (all) have same number of electron(s) in the outer shell or energy level accept all have to lose one electron do not accept all in same group 	1
	(iv)	K Na Li accept names accept correct indication of order of reactivity	1
	(v)	H ₂ do not accept H	1
		correctly balanced \rightarrow 2 + 1	
		must have H_2 correct to get balancing mark	

Q10.

(a)	(i)	green accept 'green-yellow' but not 'yellow' alone	1
		bromine or Br or Br ₂ do not accept bromide	1
	(ii)	same number of electrons in outer energy level or accept shell for energy level	
		7 electrons in outer shell accept need to gain 1 electron	1
(b)	any two from:		
	•	hydrogen or H ₂ do not accept gas given off or fizzes	
	•	heat accept exothermic do not accept flame	
	•	alkaline solution accept (metal) hydroxide or NaOH or OH do not accept dissolves or forms a solution or floating accept balanced chemical equation for 2 marks	2
Q11.			
(a)	any (y (must be named)	
(b)	F ₂		1
(c)	–/F⁻		1
(d)	(i)	covalent	1
	(ii)	made of molecules etc. type of bonding when non-metals react.	

[5]

1

[5]

1

[10]

Q12.

(a)	(i)	14 electrons =	
		gets 1 mark	

2.8.4 =

- gets 2 marks
- (ii) outer shell electrons
- (iii) same number of electrons in outer shell
- (b) (1) shiny conducts electricity
 - (2) oxide neutralises alkalis covalent bonds

Q13.

(i)	2.7	1
(ii)	2.8.8	1
(iii)	gains an electron more easily than Cl because the higher the energy level the less easily an electron is gained <i>each for 1 mark</i>	4
(i)	very unreactive or give reactivity trend	1
(ii)	fluorine reacted with silicon from glass each for 1 mark	2
(iii)	Reactivity increases down the group radon likely to react because lower in group than xenon more reactive than xenon Kr may or may not react higher in group than xenon less reactive than xenon <i>any 5 for 1 mark each</i>	5
	(i) (ii) (iii) (ii) (iii)	 (i) 2.7 (ii) 2.8.8 (iii) gains an electron more easily than Cl because the higher the energy level the less easily an electron is gained <i>each for 1 mark</i> (i) very unreactive or give reactivity trend (ii) fluorine reacted with silicon from glass <i>each for 1 mark</i> (iii) Reactivity increases down the group radon likely to react because lower in group than xenon more reactive than xenon Kr may or may not react higher in group than xenon less reactive than xenon <i>any 5 for 1 mark each</i>

[14]

2

1

1

4

[8]

(a)	(i)	same number of shells/2 full shells/3 shells/same number of energy levels any 1 for 1 mark	
		increasing number of electrons/different number of electrons/ number of electrons same as group number	
		(if electrons not specifically mentioned assume they are referring to electrons)	
		any 1 for 1 mark	2
	(ii)	all have 7 electrons in outer shell/same number in outer shell/ each has one electron missing from outer shell each can accept one electron	
		any 1 for 1 mark	
		increasing number of electrons	
		any 1 for 1 mark	2
(b)	(i)	increases down group/decreases up	
		for 1 mark	1
	(ii)	down group atoms get bigger/larger/have more shells/ more energy levels for 1 mark	
		electrons further away from nucleus/more	
		shielding down group for 1 mark	
		outer electron more easily lost/less firmly held	
		for 1 mark	3
(c)	H+ o one cova abili low	r has positive ions/one electron in outer shell/can lose electron/H ⁺ ions discharged at negative electrode (max 2) alent bonds or compounds/forms diatomic mols. or example/ ty to form H ⁻ ions/non-conductor/ Mt.Pt or low B.P. (max 2)	-
		(overall max 3)	3

[11]

Q15.

(a) three from: high mp/melts above 60 °C conducts (electricity)

basic oxide /alkaline oxide chloride has high mp molten chloride conducts electricity form positive ions/form ionic compound with non-metals solid at room temperature any 3 for 1 mark each (b) group 2 formula of oxide is XO/ion is X2+/ oxide forms alkaline solution for 1 mark each XCl₂/ X²⁺(Cl⁻)₂(X²⁺)(Cl⁻)₂ (c) Symbol of any group 2 element instead of X (b) \rightarrow (c) error carried forward accepted. e.g. Group $1 \rightarrow XCI$ Group $3 \rightarrow XCI_3$ for 1 mark Q16. (a) same number of electrons in outer shell/highest energy level or they all form 1+ ions If number of electrons is given it must be correct Allow loss of same number of electrons to give full shell not gain of electrons for 1 mark (b) electrons are lost more readily/more easily further from nucleus/bigger atom/more shielding/more energy levels/ not just more electrons not just reduced attraction for 1 mark each Q17. Group 2 / Alkaline Earth Metals (a) for 1 mark (b) (i) $MgCl_2/Mg^{2+}$ (Cl⁻)₂ (or equation with correct answer) for 1 mark ionic / electrovalent (ii) for 1 mark

[6]

3

2

1

1

2

1

1

1

[3]

Q18.

(a)	gas fo	or 1 mark	1
(b)	AIX₃ fc	or 1 mark	
			1
(c)	7 / halogens	or 1 mark	
			1

[3]

Q19.

(a) same number of electrons in outer shell / 1 / an electron in outer shell / lose one electron for 1 mark 1 (b) (i) С for 1 mark 1 (ii) Е for 1 mark 1 $2Na + 2H_2O \rightarrow 2NaOH + H_2$ (c) (i) symbols must be correct correct multiples / fractions accepted Balancing mark is independent formulae gains 1 mark balancing gains 1 mark 2 (ii) Assume 'it' means potassium potassium more reactive / vigorous / faster reaction / violent (can be awarded in either section) potassium atom larger than sodium / higher outer energy level / outer shell further from nucleus / more shells (not just more electrons) electron in outer shell is less strongly attracted / greater shielding outer electron more easily lost for 1 mark each 4

[9]

Q20.

Mendeleev's table contains only elements

	divide conta grou	es metals a ains far mor ps elements	and non-metals re elements which were discovered later s according to chemical properties			
	puts inclu	elements i des these r	n order of atomic number / atomic mass / table numbers			
	can use to work out / linked to electronic structures					
	left g	gaps for mis	ssing elements which had not been discovered			
	othe	er sensible a	answers			
			any two for 1 mark each		[2]	
Q2	21.					
	(i)	B or 2, 8,	1			
			for one mark	1		
	(ii)	A or 2, 8				
			for one mark	1		
					[2]	
02	2					
QL	(a)	(i) H, C	Cu, Ag (rules of upper and lower case to be applied here)			
			both for one mark	1		
		(ii) hvdr	oaen			
		copp				
		51170	any two for 1 mark			
				2		
	(b)	Group O / Rare gase	Noble gases / Group 8 / Group 18 / Inert gases / es / Transition elements / Metals			
			for one mark	1		
	(c)	sensible s left spaces left gaps s elements	uggestions based on their knowledge of the periodic table s for elements which had not been discovered to that elements could be placed in columns with other which had similar properties			
			юг опе тагк	1		
	(d)	proton (at	omic)			
			for one mark	1		
	(e)	they react	with water to give alkaline solutions			

they form an ion with a 1+ charge they are metals

for 1 mark each

(f) <u>maximum of 1 mark for description</u> floats / surface may melt (*not* gets hot) moves around bubbles / steam / fumes / smoke / fizz dissolves / disappeared / gets smaller flame

> (ignore sounds / heat) any one for 1 mark

2 marks for correct product

sodium hydroxide or a solution containing sodium and hydroxide ions) NaOH / caustic soda hydrogen / H₂ (if more than 2 products given subtract one for each incorrect to maximum –2) three for 1 mark each

2

1

1

1

[5]

[12]

3

Q23.

(a)	Copper Silver Hydrogen	
		two correct symbols gains one mark. (\sqrt{x})
		any two for 1 mark each
(b)	Group O / / Transitior	Noble gases / Group 8 / Group 18 / Inert gases / Rare gases elements / metals for one mark
(c)	sensible su left spaces left gaps so elements v	iggestions based on their knowledge of the Periodic Table for elements which had not been discovered that elements could be placed in columns with other which had similar properties

any one for 1 mark

(d) atomic (proton)

for one mark

Q24.

(a) transition / transitional metals / elements / d-block

for one mark

(b) coloured catalyst

> (accept high melting point) for 1 mark each

[3]

1

2

Q25.

chlorine atom smaller than bromine atom / has fewer shells / chlorine is higher in the group than bromine so it is more reactive

the outer electron / extra electron is more strongly attracted with chlorine than bromine / bromide (owtte) / more shielding with bromine / less shielding with chlorine

an extra electron is more easily gained by chlorine **or** chlorine can take an electron from bromide ion (not bromine)

for 1 mark each

Q26.

(a) -220(°C)

> accept without unit do not credit if no minus sign no tolerance allowed

(b) iodine

allow I or I_2

(c) increase down (the groups)

> N.B. must be one comparative or superlative for either position in group or melting point to obtain 2 marks e.g. accept lowest in group has highest melting point for 2 marks accept highest in group has lowest melting point for 2 marks accept highest mass numbers or proton numbers or atomic numbers have highest melting point for 2 marks allow F has lower or lowest melting point for 1 mark allow 'Increase from F to 1', i.e. referring to graph rather than periodic table for 1 mark

F has a low melting point no marks

[3]

1

2

1

	(d)	brittl	e	1	
		роо	r conductor of electricity maximum 1 mark if three boxes ticked no marks if all four boxes ticked	1	[6]
Q2	2 7. Iow c	lensit	y		
	form	hydr	oxides that dissolve in water	1	
	reac	t quic	kly with water four ticks – max 2 marks five ticks – max 1 mark all boxes ticked – 0 marks	1	[3]
Q2	2 8. (a)	(i) (ii) (iii)	Y or 2,8,8 or Argon or Ar <i>All correct gains 3 marks</i> W or 2,5 <i>3 correct gains 1 mark</i> X or 2,7 or fluorine or F <i>2 or 1 correct gains 1 mark</i>		
	(b)	(iv) 1 an	Z or 2,8,8,1 or potassium or K N.B. number of ticks on script must equal number of marks d 2 (both needed) do not credit if any other group listed 'transition metals' neutral allow alkali metals and alkali earth metals	3	[4]
Q2	2 9. (a) (b)	sam calc	e number of outer electrons / have 2 outer electrons <i>do not accept inner electrons or 2Xs</i> jum (idea) outer electrons / shell	1	
		iuiui			

[3]

[5]

	do not credit lower down group do not credit larger / more shells	1
	more easily lost / attraction from nucleus less accept screening of inner electrons	1
Q30. (a)	less dense than air no marks if four or five box	
	very unreactive maximum 1 mark if three boxes ticked	1
(b)	CO ₂	1
	HCI	1
	NH₃ do not penalise upper / lower case or superscript	1
Q31. (a)	Mendeleev arranged known elements in order of mass or properties reject explanation in terms of electrons and / or atomic number	1
	gaps in Periodic Table / group 1	1
(b)	does not last long enough to experiment / very little of it allow it has a short half-life	1
(c)	(i) (much) more violent accept more reactive	1
	 (ii) since outer electron / or shell further from nucleus do not credit lower down group larger / more shells neutral 	1
	therefore more easily lost accept screening by inner electrons	1

Q32.

(a)	He	1	
(b)	carbon / silicon / germanium / tin / lead		
	accept correctly written symbols C	/ Si / Ge / Sn / Pb	
		1	
(c)	copper		
	accept Cu	1	
		•	
(d)	iodine		
	accept I or I2	1	
Q33.			
(a)	A – electron	1	
		1	
	B – nucleus	1	
		•	
	C – proton	1	
		-	
	D – neutron	1	
(1)			
(b)	Group 1 / alkali metals	1	
	has one electron in outer chall		
	nas one electron in outer snell	mic number 3	
	therefore lithium (so Group 1 / alka	li metals)	
		1	
(c)	lithium		
	accept Li		
		1	
034			
434. (a)	(i) liquid		
(4)	allow I		
		1	
	(ii) solid		
	allow s		
	allow responses written in table		

[4]

[7]

				1	
	(b)	fluorine	accept F reject fluoride		
				1	
((c)	hydrogen b	promide		
			reject hydrogen bromine accept HBr/BrH		
			allow responses written in table	1	
					[4]
Q35	5.				
1	fluori	ne has fewe	er shells / less shielding than iodine	1	
				T	
	gain	Selectrons	more easily / more pull	1	
					[2]

Q1.

John Newland produced a periodic table in 1866. The first 21 elements in his table are shown in the diagram.

Column						
1	2	3	4	5	6	7
н	Li	Be	В	С	N	0
F	Na	Mg	AI	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe

Use the periodic table on the Data Sheet to help you to answer these questions.

(a) In which **two** columns of Newland's periodic table do all the elements have similar properties?

(1)

(1)

(b) The modern periodic table is arranged in a different order to Newland's table.

- (i) What order is used in the modern periodic table?
- . .
- (ii) Argon has a higher relative atomic mass than potassium. Explain why.

(iii) Describe the changes in the number of electrons in the atoms of elements in the period which begins with potassium and ends with krypton.

(1)

Q2.

The table gives some properties of the element silicon.

Melting point	1410 °C	
Relative atomic mass	28	
Conductivity	Conducts electricity	
Compounds	Forms compounds with covalent bonds	
Position in periodic table	Group 4	
Reaction with water	Unreactive	
Density	Relatively low	

(a) Give **two** ways in which silicon is similar to the alkali metals.

2		
Give two	ways in which the properties of silicon are different from those of	the al
metals.		

(2)

(2) (Total 4 marks)

Q3. Use	e the periodic table on the Data Sheet to help you to answer these questions.	
(a)	Write the symbol for helium.	
(b)	Write the name of an element in Group 4.	(1)
(c)	Write the name of the element which has a relative atomic mass of 64.	(1)
(d)	Write the name of the element with the next highest atomic number after Te (tellurium) in the periodic table.	(1)

Q4.

(a) The table shows how Group 7 elements react with hydrogen.

Element	Reaction with hydrogen			
	Description	Product		
Fluorine	Explosive reaction in dim light	Hydrogen fluoride		
Chlorine	Explosive reaction in sunlight	Hydrogen chloride		
Bromine	Reacts if heated	Hydrogen bromide		
lodine	Reacts if heated strongly	Hydrogen iodine		

(i) Explain why all the Group 7 elements react in a similar way with hydrogen.

(ii)	Explain the difference in the rates of the reaction of fluorine with hydrogen, a	and
	of iodine with hydrogen.	

(2)

(2)

(b) Explain why Group 0 elements are monatomic.

(2) (Total 6 marks)

Q5.

Part of the Periodic Table is shown. It includes the symbols for six elements.

- (a) Write the symbol for carbon. _
 - (b) (i) Put the symbol CI, for chlorine, into its correct position in the Table.

(1)

(1)

(ii) Bromine, chlorine, fluorine and iodine are halogens. Which one of these halogens is least reactive?

- (c) The alkali metals form Group 1 in the Periodic Table. Write the symbol of the most reactive alkali metal shown in the Table above.
- (d) Write the symbol for an element which is in the same Group as sodium.

EXAM PAPERS PRACTICE

- Q6.
 - (a) Choose from the names of elements in the box the answers to the questions which follow.

aluminium	carbon	chlorine	copper
helium	iron	magnesium	sodium

Give the name of:

- (i) an alkali metal
- (ii) a halogen

(iii) a noble gas

- (b) The alkali metals are in Group 1 of the Periodic Table. The elements in Group 1 have a number of similar properties.
 - (i) Describe **one chemical** property which they have in common.
 - (ii) Describe **one physical** property which they have in common.

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(Total 5 marks)

(Total 5 marks)

Q7.

Part of the Periodic Table is shown below. Use the information to help you answer the questions which follow.

Н							He
Li	Be	в	C	И	0	F	Ne
Na	Mg	Al	Si	Ρ	5	C1	Ar

(a) Write the symbol for:

(i)	chlorine;	

(ii) sodium. _____

(b) (i) What is the symbol of the element which is in Group 2 and Period 3?

- (ii) What name is given to Group 7?
- (c) The arrangement of electrons in sulphur (S) is 2.8.6.

Write the arrangement of electrons for:

- (i) neon (Ne); _____
- (ii) aluminium (AI). ______
- (d) The Periodic Table is an arrangement of elements in order of increasing atomic number. What is the atomic number of an element?

(1)

(2)

(2)

(1)

(1)

(e) What is the name of the uncharged particle in the nucleus of an atom?

Q8.

Potassium reacts violently with cold water.

It forms an alkaline solution of potassium hydroxide and hydrogen.

potassium + water \rightarrow potassium hydroxide + hydrogen

(a) In what physical state is hydrogen given off?

Choose your answer from the words in the box.

What is the number of the group that has potassium in it?

Transition metals

(1)

- (d) Sodium is in the same group as potassium.
 - (i) How does sodium react with cold water and what is formed?

(2)

(ii) How can you prove that an alkaline solution is formed when sodium reacts with water?

(2)

(e) Lithium reacts more slowly with cold water than sodium.

State two ways the reaction can be made to go faster.

(2) (Total 10 marks)

Q9.

Part of the Periodic Table is shown below. The symbol for helium is given.

(a) (i) What name is given to the group that contains helium?

(ii) Give one use for helium and explain why it is used.
(iii) What is the name of another element in the same group as helium?
(iv) Write the symbol for this element.
(iv) Write the names of two other elements not in Group 0 that are gases at room temperature.
(1)

(c) The alkali metals are in Group I of the Periodic Table.

Give the name and the symbol of **one** alkali metal.

	Name	Symbol
--	------	--------

(d) Alkali metals have low melting points.

Give another physical property of the alkali metals.

(1) (Total 10 marks)

(2)

(4)

Q10.

(a) The diagram shows the electronic structure of a particular element.

In a similar way, show the electronic structure of another element from the same group in the periodic table and name the element you select.

Name of element selected _____

(b) The element lithium gives a moderate reaction with cold water, releasing hydrogen and forming a solution of lithium hydroxide.

Describe how sodium is similar to and how it is different from lithium in its chemical reaction with cold water.

Explain any similarity or difference in terms of their atomic structure.

Similarity.

Reason.

Difference	 	 	
Reason	 	 	

		(5)
(Total	9	marks)

Q11.

The table shows the properties of four elements from Group VII of the Periodic Table.

Element	Proton	Electronic	Boiling	Melting	State at	Reaction with hy	drogen
	Number	structure	point (°C)	point (°C)	20°C	Ease	Product
Fluorine		2.7	-188	-218	gas	Explosive reaction in dull light	hydrogen fluoride
Chlorine	17		34	-101		Explosive reaction in sunlight	hydrogen chloride
Bromine	35	2.8.18.7	+59	-7		React if heated	hydrogen bromide
Iodine	53	2.8.18.18.7	+185	+114	solid	React if heated strongly	hydrogen iodide

(a) Complete the spaces in the table.

(4)

(1)

(b) Comment briefly on the trend in melting points for these four elements.

(c) Explain, in as much detail as you can:

(i) why the reactions of these elements with hydrogen are similar.

(ii) why their reactivity with hydrogen decreases from fluorine to iodine.

EXAM PAPERS PRACTICE	
	(

(Total 9 marks)

Q12.

Three elements in Group 2 of the periodic table are beryllium (Be), magnesium (Mg) and calcium (Ca). Their mass numbers and proton numbers are shown below. The electronic structure is shown for beryllium and calcium.

(a) In a similar way, draw the electronic structure for magnesium.

(3)

(b) • The three elements have similar chemical properties

• The reactivity of these elements with non-metals, increases from beryllium to magnesium to calcium.

Explain these two statements in terms of atomic structure.

Q13.

The electronic structures of five elements, V, W, X, Y and Z are shown below.

V	W	Х	Y	Z
2.1	2.6	2.8.4	2.5	2.8.6

(a)	(i)	Write the letters of the two elements which belong to the same group in the	
		Periodic Table	
	(ii)	To which group do they belong?	(2
(b)	Writ	e the letters of two elements that are gases	- (1
(c)	Lithi Peri	um, sodium and potassium are the first three elements in Group 1 of the odic Table.	,
	(i)	Lithium reacts with cold water to produce lithium hydroxide and hydrogen.	
		Describe how the reaction between sodium and water is	
		(A) similar and (B) different to that between lithium and water.	
		(A) Similar	_
		(B) Different	-
			- (3
	(ii)	Potassium is much more reactive than lithium.	
		Explain this in terms of their electronic structures.	
			-
			-
		/T	- (3

Q14.

The diagram shows part of the periodic table.

							Group 0
Group 1	Group 2	Group 3	Group 4	G1001p 5	Group б	Group 7	
23	24	27	28	31	32	35	40
sodium	magnesium	abiminitim	silicon	phosphorous	sulphur	chlorine	argon
11	12	13	14	15	16	17	18

Choose from the elements shown in the table:

(a)	one metal	
		(1)
(b)	a noble gas	
		(1)
(c)	a coloured gas	
		(1)
		(Total 3 marks)

Q15.

Sodium reacts with water to produce hydrogen gas and a solution of sodium hydroxide.

Complete the **word** equation for this reaction (do **not** use symbols or formulae).

Q16.

The idea of a periodic table of the elements was started by John Newlands about 140 years ago.

He wrote down the elements he knew about in order, starting with the lightest atoms.

Then he arranged them into seven groups, like this:

1	2	3	4	5	б	7
н	Li	Be	В	С	N	О
F	Na	Mg	Al	Si	Ρ	s
C1	к	Ca				

(a) Write down **three** differences between the groups in Newlands' periodic table and the groups in the modern periodic table (up to the element Ca, which is calcium).

- (3)
- (b) Suggest one reason why this part of Newlands' table was different from the modern one.

(1) (Total 4 marks)

Q17.

The idea of a periodic table of the elements was started by John Newlands about 140 years ago.

He wrote down the elements he knew about in order, starting with the lightest atoms.

Then he arranged them into seven groups, like this:

1	2	3	4	5	б	7
Н	Li	Be	в	С	N	ο
F	Na	Mg	Al	Si	P	S
C1	к	Ca				

(a) Write down **three** differences between the groups in Newlands' periodic table and the groups in the modern periodic table (up to the element Ca, which is calcium).

- (b) Suggest **one** reason why this part of Newlands' table was different from the modern one.
- (c) Dimitri Mendeleev later developed the periodic table of the elements. He arranged the elements according to their properties and their relative atomic masses.

The diagram shows where Mendeleev put tellurium (Te) and iodine (I) in his table because of their properties.

(The diagram uses present day symbols and the atomic numbers of the elements have been added to Mendeléev's table.)

_			~
\sim	GROUP6	GROUP7	
			\Box
	80 8	9 F	R
	³² 16S	^{35.5} 17C1	\Box
)		⁸⁰ Br	[
	¹²⁸ 52 52	¹²⁷ I 53 I	$\left[\right]$
\square			\Box

(i) What is wrong with this arrangement of tellurium and iodine in terms of their relative atomic masses?

(1)

(3)

(1)

(ii) Explain why this is not a problem in the modern periodic table.

(2) (Total 7 marks) Q18. These are the electronic structures of the atoms of three different elements. 2.8.1 2.8.8 2.8.8.1 element A element B element C (a) Identify elements A and B. Element A is _____ Element B is _____ (2) Why is element C more reactive than element A? (b) (i) (2) (ii) Why is element B unreactive? (2) (Total 6 marks)

Q19.

The diagram shows some of the elements in Groups I and 7 of the Periodic Table.

Crow							0	
Group	Group							
1	2	3	4	5	б	7		
Li						F		
Na						C1		
к						Br		
	J					Ι		

(a) The elements in Group 1 have similar chemical properties.

Describe **one** chemical reaction which shows that lithium, sodium and potassium react in the same sort of way.

You should say what you would react them with and what substances would be produced.

- What you would react them with
- Substances produced
- (b) All the elements in Group 7 react with hydrogen.

Fluorine reacts in the dark, explosively, at very low temperatures. Chlorine reacts explosively in sunlight, at room temperature. Bromine, in light, only reacts if heated to about 200°C.

Suggest the conditions needed for hydrogen and iodine to react. Give reasons for your answer.

(c) Hydrogen and chlorine react to produce hydrogen chloride. Balance the symbol equation for the reaction.

 $H_2 \quad \textbf{+} \quad \textbf{Cl}_2 \quad \rightarrow \quad \textbf{HCl}$

(d) Use your understanding of atomic structure to explain the trend in reactivity in the Group 7 elements.

(1)

(2)

(2) (Total 8 marks)

Mark schemes

Q1.

(a)	2 and 3				
	both needed	1			
(b)	(i) atomic number / proton number electrons neutral	1			
	(ii) argon has more neutrons accept more particles in nucleus	1			
	(iii) increases	1			
	by one with each element	1			
Q2.					
(a)	conducts electricity	1			
	density low				
(b)	any two from:				
	unreactive (with water)				
	forms compounds with covalent bonds				
	high melting point	2			

[5]

[4]

1

Q3.

(a)	Не	1
(b)	carbon / silicon / germanium / tin / lead accept correctly written symbols C / Si / Ge / Sn / Pb	1
(c)	copper	

accept Cu

(d) iodine

accept I or I_2

Q4.

(a)	(i)	same number of electrons allow all have 7 electrons	
		in outermost shell	1
	(ii)	fluorine has fewer shells than iodine / less shielding	1
		gains electrons more easily / more pull	1
(b)	oute	ermost shell full	1
	no te	endency to lose / gain electrons	1

Q5.

(a)	C	1
(b)	(i) C1 immediately below F do not credit C below F	1
	(ii) iodine or I or I ₂ do not credit iodide	1
(c)	K or accept word potassium do not credit word potassium	1
(d)	Li or K or Rb or Cs or Fr do not credit lithium or potassium or rubidium or caesium or francium	1

[5]

1

1

[4]

[6]

Q6.

- (a) (i) sodium
 - do not credit Na

- (ii) chlorine do not credit Cl
- (iii) helium do not credit He

(b) (i) any **one** from

react with water do not credit just 'very reactive' accept a recognised general reaction for a Group I metal such as reacts with oxygen **or** chlorine **or** acids

form alkalis with water

give off hydrogen with water It must specify a named chemical reaction

1

1

1

1

1

(ii) any one from

low melting accept solid

low density accept float on water

malleable

soft

accept easily cut with a knife

ductile

shiny

(good) conductors

Q7.

(a)	(i)	CI		
			only	1
				I
	(ii)	Na		
			only	1
(4)	(1)	Ma		
(d)	(1)	ivig	only	
			ony	

[5]

	(ii)	halog	lens do not credit halide
(c)	(i)	2.8	ignore commas or fullstops
	(ii)	2.8.3	
(d)) the number of protons accept the number of electrons in an atom or 'number of protons or electrons' do not credit just the number of electrons		
(e)	neuti	ron	

[8]

1

1

1

1

1

Q8.

(a)	gas		1		
(b)	(i)	ignore any reference to a particular kind of acid			
		ignore any relevence to a particular kind or acid	1		
	(ii)	7	1		
(c)	1	credit potassium or K written into Group 1	1		
(d)	(i)	reacts rapidly or quickly or fast			
		credit melts or fizzes or dissolves or violently or less violently (than K)			
		sodium hydroxide or hydrogen credit NAOH or H2			
			1		
	(ii)	add universal indicator credit add indicator or litmus or use pH paper	1		
		turns blue or purple credit 'it goes purple' providing something has been added to the water			
(e)	any two from				

2

1

2

1

1

2

[10]

cut it up **or** have smaller pieces or larger surface area do not accept more lithium **or** less water

stir

Q9.

(a)

(b)

(c)

(i) any one from noble gases inert gases accept group O or group 8 do not accept rare gases (ii) any pair from an appropriate reason gains the second mark balloons lighter than air airships lighter than air or non-flammable do not accept light do not accept they go up or rise in the air or unreactive for divers insoluble in blood or to stop the bends (air supply) (iii) neon or argon accept krypton, xenon, radon (iv) Ne **or** Ar accept Kr, Xe, Rn do not accept NE or AR or ne or ar etc any two from oxygen nitrogen hydrogen chlorine fluorine any pair from the first mark for the name and the second mark for the correct symbol

sodium Na potassium K

lithium Li accept rubidium, caesium, francium Rb, Cs, Fr do not accept NA or na etc

(d) any one from

low density

accept floats on water

soft

accept malleable or ductile

grey

shiny when cut

conducts electricity or heat

Q10.

υ.					
(a)	2.8.2. mag inner shell outer shell intermedia element na	nesium or 2.8.8.2. (2) (2) te shell/s correct amed to match struct each for 1 mark (Structure correct 2, award 2 marks)	2. calcium ructure ct for element name but not in group rs) 4		
(4)	Circiler				
(b)	Similar	for 1 mark	nydrogen and/or an alkall/nydroxide produced		
	Reasons:		chemical reaction involves loss of an electron Na + Li have the same number of electrons in the		
	outer sl	hell			
			(do not allow same group of p.table)		
		each for 1 mark			
	Different		rate of reaction faster for sodium*		
		for 1 mark			
	Reason: atom		outer electron more easily lost from the sodium		
	[* allow so	dium hydroxide produced]			
		for 1 mark	_		
			5		

5

2

1

[10]

Q11.

- (a) (i) 9
 - (ii) 2.8.7 gas
 - (iii) liquid
 - each for 1 mark
- (b) increase as go down the table/F \rightarrow I/down group/ as more protons/as atoms get bigger for 1 mark
- (c) (i) reactions depend on taking/sharing electrons same number of electrons in outer shell/highest energy level
 - (ii) $F \rightarrow I$ electrons in a higher energy level/further from nucleus so less easy to gain/hold electrons each for 1 mark

4

3

[9]

4

1

Q12.

(a)

each shell completed correctly [for written 2.8.2 award 1 mark] for 1 mark each

- (b) idea that
 - chemical reactions of metals, involves losing electrons for 1 mark
 - these three elements have the same number of electrons in the outer shell/highest energy level gains 1 mark

but

• these three elements all have two electrons in

the outer shell/highest energy level gains 2 marks

All form ions with a 2+ charge gains all 3 of these marks

- reactivity depends on how easily the electrons are lost
 for 1 mark
- the further the electrons are from the nucleus/the higher the energy level they are in, the more <u>shells</u> the atom has* then the more easily they are lost for 1 mark

for 1 mark

• in calcium the electrons are further from the nucleus than in magnesium than in beryllium for 1 mark

or as you go down the group (*not just "the more electrons"....)

Q13.

- (a) (i) W and Z (allow oxygen and sulphur) for 1 mark
 - (ii) Group 6 for 1 mark
- (b) W and Y (allow oxygen and nitrogen or correct symbol for any 2 gaseous elements) for 1 mark
- (c) (i) (S) produce an alkali/hydroxide each
 produce hydrogen <u>or</u> idea of effervescence
 - (D) (alkali is) sodium hydroxide
 - the reaction is faster/more vigorous any 3 for 1 mark

3

6

2

1

[9]

(ii) *ideas that*

potassium is further down the group <u>or more electron shells</u> gains 1 mark

but because the electrons in potassium are further from the nucleus/in a more outer shell / in a higher energy level gains 2 marks

so they are most easily lost **or** less strongly pulled/held by nucleus for 1 mark

Q14			
(a)	sodium / magnesium / aluminium (Allow correct symbols) for 1 mark		
		1	
(b)	argon (Allow correct symbols)		
	for 1 mark	1	
(c)	chlorine (Allow correct symbols)		
	for 1 mark	1	
		I	[3]

Q15.

- correct reactants (i.e. sodium + water either way round)
- correct products (i.e. sodium hydroxide + hydrogen, either way round)
- arrow \rightarrow / = [do <u>not</u> allow produce/makes or similar]

[do <u>not</u> allow symbols or formulae] each for 1 mark

Q16.

(a) ideas that

- hydrogen is in a group / is with the halogens
- only seven groups / no group O / no noble gases / fewer elements
- halogens are in the first group / Group 1
- other elements are in one group higher / one example
- modern table only has two elements in the top row/period
- metals and non-metals are not separated
- arranged in increasing mass number [Credit converse answers] any three for 1 mark each

3

3

[9]

[3]

- (b) ideas that
 - all rows / periods are the same length / have seven elements

- all elements had to be in one of the groups
- <u>he didn't know</u> about the noble gases / not all the elements <u>had been discovered</u>
- he didn't know about atomic number / proton number / atomic structure / electron structure any one for 1 mark

Q17.

- (a) ideas that
 - hydrogen is in a group / is with the halogens
 - only seven groups / no group O / no noble gases / fewer elements
 - halogens are in the first group / Group 1
 - other elements are in one group higher (or example)
 - modern table only has two elements in the top row / period
 - modern table not in order of atomic weight/mass
 - metals and non-metals not at opposite ends (NB allow converse answers throughout) any three for 1 mark each
- (b) ideas that
 - all rows / periods are the same length / have seven elements
 - all elements had to be in one of the groups
 - he didn't know about the noble gases / not all the elements had been discovered
 - he didn't know about atomic/proton number/electron structure
 - he arranged elements in order of atomic weight/mass
 any one for 1 mark

1

1

3

1

[4]

- (c) (i) *ideas that* tellurium and iodine are in reverse order for 1 mark
 - elements are arranged in order of proton (atomic) number or based on electron structure/outer shell electrons (so tellurium is correctly placed before iodine)

[tellurium = 'dead mark'] each for 1 mark

Q18.

(a) A is sodium/Na* B is argon/Ar* *each for 1 mark*

(*case of letters must be correct)

- (b) (i) *ideas that*
 - outer electron (in element C / 2.8.8.1 / potassium) is at a higher energy level / in a more outer shell/further away from <u>nucleus</u> / shielded by more full electron shells
 - electron is more easily lost/less strongly held / attracted each for 1 mark

2

2

2

- (ii) ideas that
 - (element B / 2.8.8 / argon) has an outer shell that is complete/has 8 electrons
 - no tendency to gain or lose electrons / has a stable <u>configuration</u>
 - (not 'is stable' / 'in group O' / 'a noble gas') each for 1 mark

2

[6]

Q19.

(a) • water

(allow acid*)

- (metal) hydroxide (solution)/alkali
 (allow metal salt / compound)
 - hydrogen (allow hydrogen) for 1 mark each

(*if named acid then matching salt)

or

- oxygen / chlorine / halogen
- for 1 mark

[7]

• oxide / chloride / halide gains 1 mark

but

- named oxide(s) gains 2 marks (accept <u>fully correct</u> formulae throughout)
- (b) idea that
 - hydrogen and iodine would only react if heated to > 200°C / a high temperature (*ignore* reference to light / dark)
 - reactivity decreases down the Group / iodine is lower in the Group than bromine / iodine is the lowest in the Group

(or converse N.B. credit this idea here even if given in (d)) for 1 mark each

- (c) $H_2 + Cl_2 \prod \underline{2}HCl \text{ or } \frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$ for 1 mark
- (d) idea that (or converse)
 - in atoms lower down the Group the electrons in the outer shell / highest energy level (of electrons) are further from the nucleus or shielded by more (inner) shells / electrons

[but not simply "more electrons"]

or are less strongly attracted to the nucleus

• so an electron is less easily gained for 1 mark each

[8]

3

2

1

2