

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

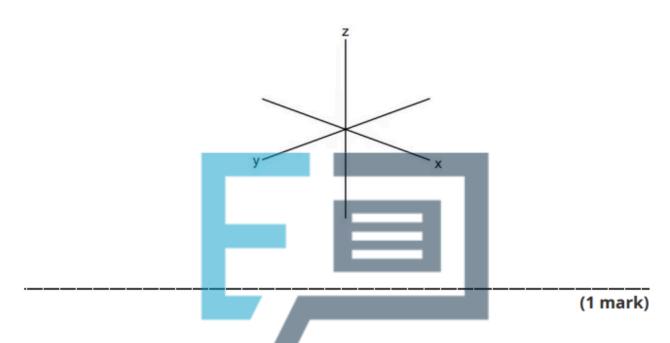
Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Topic Question

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY


AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Question 1.

(a) Sketch the shape of a 3d_{xy} orbital.

Some transition elements and their compounds behave as catalysts. Explain why **(b)** i) transition elements behave as catalysts.

ERS PRACTICE

- Catalysis can be classified as heterogeneous or homogeneous.

 Complete Table 1.1 by placing **one** tick (🗸) in each row to indicate the type of catalysis in each reaction.

Table 1.1

	type o	of catalysis
reaction	heterogeneous	homogeneous
Fe in the Haber process		
Fe ²⁺ in the I ⁻ / S ₂ O ₈ ²⁻ reaction		
NO ₂ in the oxidation of SO ₂		

[1]

					(3 marks)

(c) A solution containing a mixture of $Sn^{2+}(aq)$ and $Sn^{4+}(aq)$ is added to a solution containing a mixture of $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$.

Table 2.2 lists electrode potentials for some electrode reactions of these ions.

Tabl	e 2.2
electrode reaction	E ⁰ /V
$Fe^{2+} + 2e^{-} = Fe$	-0.44
$Fe^{3+} + 3e^{-} = Fe$	-0.04
$Fe^{3+} + e^{-} = Fe^{2+}$	+0.77
$Sn^{2+} + 2e^- = Sn$	-0.14
$Sn^{4+} + 2e^- = Sn^{2+}$	+0.15

E^θ data from the table can be used to predict the reaction that takes place when the two

Esolutions are mixed. PAPERS PRACTICE

Capyrighte an equation for this reaction.

© 2024 Exam Papers Practice

[1]

ii)	Calculate	E_{cell}^{Θ}	for	this	reaction	
-----	-----------	----------------------------	-----	------	----------	--

[1]

(2 marks)

(d)	Hexaaquairon(III) ions are pale violet. They form a colourless complex with fluoride ions
	F ⁻ , as shown in equilibrium 1 , and a deep-red complex with thiocyanate ions, SCN ⁻ , as
	shown in equilibrium 2.

equilibrium **1**
$$[Fe(H_2O)_6]^{3+} + F^- = [Fe(H_2O)_5F]^{2+} + H_2O K_{stab} = 2.0 \times 10^5 \text{ mol}^{-1} \text{ dm}^3$$

violet colourless

equilibrium **2** [Fe(H₂O)₆]³⁺ + SCN-
$$\Rightarrow$$
 [Fe(H₂O)₅SCN]²⁺ + H₂O K_{stab} = 1.0 × 10³ mol⁻¹ dm³

violet deep-red

The following two experiments are carried out.

Experiment 1: A few drops of KSCN(aq) are added to 5 cm³ of Fe³⁺(aq), followed by a few drops of KF(aq).

Experiment 2: A few drops of KF(aq) are added to 5 cm³ of Fe³⁺(aq), followed by a few drops of KSCN(aq).

C_{i}	pyright redict and explain the sequence o					
	(i) I " Predict and explain the sequence o	t colour	changes	you would	observe ir	n each of
ര	2024x5ekimentPapatispePimentice					
3	ZOZ Experimenti rapolexperimentizo					

Experiment 1	
Experiment 2	

[4]

	ii)	Name the type of reaction occurring during the experiments in (d)(i). [1]
			(5 marks)
			(5 marks)
(e)	Solutio	ons of iron(III) salts <mark>are</mark> acidic due to the equilibrium shown.	
		$[Fe(H_2O)_6]^{3+}(aq) = [Fe(H_2O)_5(OH)]^{2+}(aq) + H^+(aq) K_a = 8.9 \times 10^{-4}$) ⁻⁴ mol dm ⁻³
	Calcula	ate the pH of a 0.25 mol dm ⁻³ FeCl ₃ solution.	
E	Show y	AND PAPERS PRACE	
Co	opyrig	pH = ght	
	1 / \	4 Exam Papers Practice	
			(2 marks)

Question 2.

(a) Define the term ligand.

._________(1 mark)

(b) $[Cu(H_2O)_6]^{2+}$ reacts with ammonia to form a new complex. Write an expression for the overall stability constant, K_{stab} , for the formation of $[Cu(H_2O)_2(NH_3)_4]^{2+}$

 $K_{\text{stab}} =$ (1 mark)

(c) Table 2.1 shows the stability constants for each stage in the replacement of four water molecules for the [Cu(H₂O)₆]²⁺ complex

EXAM PAPERS PRACTICE

K_n value / dm³ mol-1

Converight

Copyright

© 2024 Exam Pape

^n	value / aiii iiioi
<i>K</i> ₁	1.78 x 10 ⁴
ers Pra⁄etice	4.07 x 10 ³
<i>K</i> ₃	9.55 x 10 ²
<i>K</i> ₄	1.74 x 10 ²

i) Using Table 2.1, calculate the stability constant, K_{stab} , and state the units.

	$K_{stab} = \dots$	
	Units =	
		[2]
ii)	Explain how this value relates to the relative stabilities of the two complexes	[1]
.——. .——. Question 3		——– (3 marks

EXAM PAPERS PRACTICE

Copyright
© 2024 Exam Papers Practice

(a) State the meaning of the term stability constant, K_{stab}

(1 mark)

(b) Silver forms different complexes. The stability constant, K_{stab} , values at 298 K are shown in Table 3.1

Table 3.1

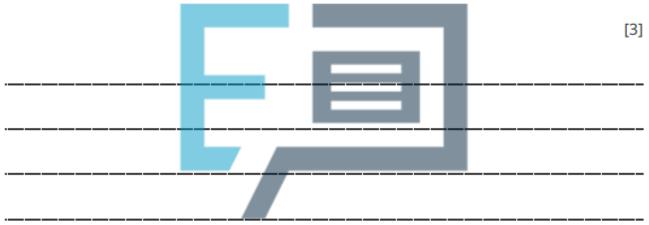
complex	stability constant, K _{stab}
[Ag(CN) ₂] ⁻	5.3 x 10 ¹⁸
[Ag(NH ₃)] ⁺	1.7 x 10 ⁷
[Ag(S ₃ O ₃) ₂] ³⁻	2.9 x 10 ¹³

The following equilibrium exists between two complex ions of silver in the +1 oxidation state.

Copyright © 2024 Exam Papers Practice

	Calculate K_{stab} and state the units	K _{stab} =
		Units =[3]
Using	Table 3.1, deduce the order of stability of th	(4 marks)
X	most stable PAPERS	PRACTICE
s resort	ght	
	44estatable apers Practice	

(c)



Question 4.

- (a) When chromium(III) sulfate dissolves in water, a green solution containing the $[Cr(H_2O)_6]^{3+}$ ion forms.
 - i) State the bond angles found in this complex ion.

[1]

ii) Explain why the chromium(III) complex ion is coloured.

(4 marks)

(b) Ethylenediaminetetraacetate, EDTA⁴⁻, shown in Fig. 1.1. is a polydentate ligand.

Fig. 1.1

When a solution of EDTA^{4–} is added to a solution of $[Cr(H_2O)_6]^{3+}$ ions, a new complex ion is formed.

$$[Cr(H_2O)_6]^{3+} + EDTA^{4-} = [Cr(EDTA)]^{-} + 6H_2O$$

i) Na	me the	type	of r	eaction	occurring	here.
-------	--------	------	------	---------	-----------	-------

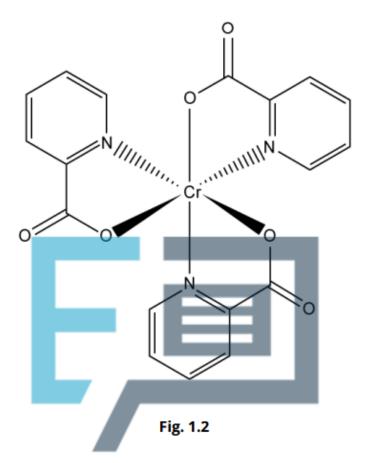
[1]

ii) Write an expression for the stability constant, K_{stab} , of [CrEDTA]⁻ in this reaction.

[1]

iii) The numerical value of the K_{stab} of [CrEDTA] is 2.51 × 10²³ in this reaction. Suggest what this indicates about the position and entropy of the equilibrium.

[3]


EXAM PAPERS PRACTICE

© 2024 Exam Papers Practice

(5 marks)

(c) Chromium (III) picolinate, shown in Fig. 1.2, is a neutral complex that can be prepared from the weak acid, picolinic acid.

Chromium(III) picolinate is used in tablets as a nutritional supplement for chromium.

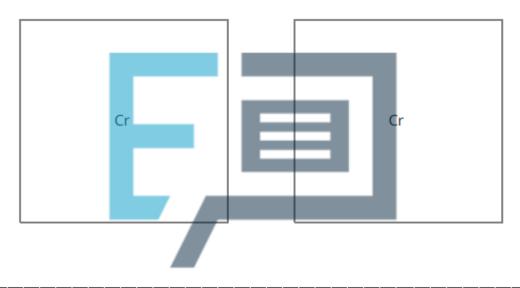
i) Draw the structure of the ligand in chromium(III) picolinate.

Copyright
© 2024 Exam Papers Practice

[1]

ii) A typical tablet of chromium(III) picolinate contains 200 μg of chromium.

Calculate the mass, in g, of chromium (III) picolinate in a typical tablet. Give your answer to **three** significant figures.


[2]
 (3 marks)

(d) Compound L is a complex with the empirical formula CrN₄H₁₂Cl₃

The formula of compound L contains one chloride ion and a complex ion M, which has two stereoisomers.

Complete three-dimensional diagrams to show the shape of the stereoisomers of complex ion M.

Cop<u>yright</u> © 2024 Exam Papers Practice

(3 marks)