

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701) Subject: Chemistry Topic: CIE Chemistry Type: Mark Scheme

Chemistry CIE AS & A Level To be used for all exam preparation for 2025+

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Mark Scheme

Answer 1

The correct answer is A because:

- When concentrated sulfuric acid (H₂SO₄) reacts with a halogen it acts as both an acid and an oxidising agent.
 - Products formed due to H2SO4 acting as an acid: hydrogen halide and sodium hydrogen sulfate.
 - As H₂SO₄ acts as an oxidising agent the halogen is acting as a reducing agent.
- Only bromine and iodine are strong enough reducing agents to reduce the concentrated sulfuric acid (H₂SO₄).
 - For example, in potassium bromide; the bromide ions are oxidised to bromine.
 - The bromide ions reduce the sulfuric acid to sulfur dioxide gas.
- Therefore, a series of steps take place in the reaction of KBr and H2SO4:
 - 1. Sulfuric acid acts as an acid and donates a proton to the bromide ion:
 - $\blacksquare KBr + H_2SO_4 \rightarrow KHSO_4 + HBr$

2. The HBr gets oxidized and the sulfuric acid is reduced: $2HBr + H_2SO_4 \rightarrow Br_2 + SO_2 + 2H_2O$

• The complete list of products from both steps of this reaction are potassium

hydrogensulfate (KHSO4), hydrogen bromide (HBr), bromine (Br2), sulfur dioxide (SO2) and water (H2O).

Answer 2

The correct answer is **B** because:

- In hot concentrated sulfuric acid, the astatide ion acts as a strong reducing agent.
- The sulfuric acid is reduced to hydrogen sulfide gas, and the astatide is oxidised to astatine.
- This is an example of a **redox** reaction:
 - 8NaAt (s) + $5H_2SO_4$ (l) → $4Na_2SO_4$ (s) + $4At_2$ (s) + H_2 (g) + $4H_2O$ (l)
- As you go down the group the reducing power of the Group 17 atoms increases, or it is more easily oxidised.

A is incorrect as following the solubility trend that AgI is insoluble. AgAt will also be insoluble.

C is incorrect as a halogen atom can only displace a less reactive halide ion from its salt. Astatine is less reactive than chlorine so no reaction would take place.

D is incorrect as sulfur dioxide is also produced.

Answer 3

The correct answer is D because: PERS PRACTICE

- The test has to be done in solution, so the powders were added to water.
- C When acidified silver nitrate is added a pale yellow colour is seen.
 - The pale yellow colour shows the presence of sodium iodide.
 - When the concentrated ammonia was added the precipitate partially dissolved and leaves a darker yellow precipitate.
 - \circ $\;$ The darker yellow precipitate confirms the presence of sodium iodide.
 - The partial dissolving of the precipitate confirms the presences of sodium chloride.

A is incorrect as the precipitate would not partially dissolve when concentrated aqueous ammonia was added.

B & C are incorrect as the precipitate would be a cream colour when aqueous silver nitrate was added.

For more help visit our website https://www.exampaperspractice.co.uk/

Answer 4

The correct answer is C because:

- In reaction 1 there is no change in the oxidation state of sulfur.
 - Both hydrogen and potassium have an oxidation state of +1 meaning that the sulfur oxidation state in these compounds is +6.
- In reaction 2 the bromide ions reduce the sulfuric acid to sulfur dioxide gas, this decreases the oxidation state of the sulfur from +6 in the sulfuric acid to +4 in the sulfur dioxide.
 - A change in the oxidation state of 2.
- In reaction 3 the reduction of sulfuric acid (oxidation state +6) is more complex.
 - The first stage is to sulfur dioxide (sulfur oxidation state +4).
 - Then to sulfur (oxidation state 0).
 - And then to hydrogen sulfide (sulfur oxidation state -2).
 - This makes the greatest change in oxidation state in this reaction 8 (from +6 to -2).

EXAM PAPERS PRACTICE

Copyright © 2024 Exam Papers Practice