

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Topic Question

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY

AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

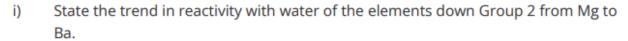
Question 1.

(a)	This	question is about Group 2 carbonates.	
	Mag	nesium carbonate is used as an antacid and used to treat heartburn.	
	i)	Write the chemical formula of magnesium carbonate.	[1]
	ii)	Write a balanced symbol equation for the reaction of magnesium carbonate vidilute nitric acid.	
			[2]
		(3 m	arks)
(b)	i)	From the list below, identify the compound that will decompose at the lowest temperature.	IC
(C (C)	ору 20:	right 24. Exantium carbonate 24. Exantium carbonate	
		barium carbonate	[1]
	:::\	White a below and a maked accusting fourth a decomposition of view above	[1]
	ii)	Write a balanced symbol equation for the decomposition of your chosen	

[1]

(2 marks)

(c)	Group 2 nitrates become more thermally stable going down the group.		
	Explain why.		
	(2 marks)		
Que	estion 3.		
(a)	This question is about Group 2 compounds.		
	Strontium will react with water.		
	i) Write a balanced symbol equation for the reaction.		
E	ii) Describe a test to identify the gas produced. [2]		
C	opyright		
(C)	2024 Exam Papers Practice		
	(3 marks)		


(b)	Calci	ium hydroxide reacts with sulfuric acid to produce calcium sulfate and water.	
	i) ii)	Write the balanced symbol equation for this reaction. [2] Describe the trend in the solubility of the Group 2 sulfates.	
	,	[1]	
		(3 marks)	
(c)		trend in solubility of the Group 2 sulfates is due to the lattice energy, ΔH^{θ}_{latt} , and halpy change of hydration, ΔH^{θ}_{hyd} , of the Group 2 sulfates changing.	
	Desc	cribe the trend in ΔH^{θ}_{latt} and ΔH^{θ}_{hyd} of Group 2 sulfates going down Group 2.	
E	X	AM PAPERS PRACTIC	E
		right 24 Exam Papers Practice (2 ma	ırks)

Question 3.

(a)	The elements in Group 2 from Mg to Ba can be used to show the trends in properties
	down a group in the Periodic Table.

The Group 2 elements react with water.

(b) Give the **formula** of the hydroxide of the element in Group 2 from Mg to Ba that is most soluble in water.

Copyright

© 2024 Exam Papers Practice (1 mark)

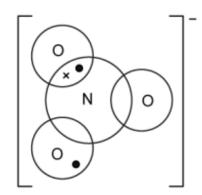
(c) A trend in the thermal decomposition of Group 2 nitrates can also be observed.

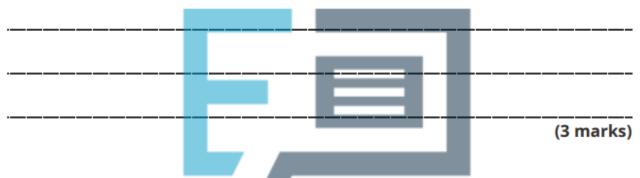
i)	Give the oxidation number of nitrogen in $Ca(NO_3)_2$.	
ii)	Write an equation for the thermal decomposition of $Ca(NO_3)_2$.	[1]
iii)	State the trend in thermal stability of Group 2 nitrates.	[2] [1]
		(4 mar
estion This	question is about Group 2 nitrates. ERS PRAC	TIC
કાર 20:	right htium hitrate is is a Group 2 nitrate used to produce a colour in fireworks 24 Exam Papers Practice	
i)	Give the formula of strontium nitrate.	
ii)	Give the colour that strontium nitrate will give in fireworks.	[1]
		[1]
		(2 marks)

Write an equation for the reaction that occurs when strontium nitrate is heated.

	ii) Give one observation of this reaction.	[2]
	ii) Give one observation of this reaction.	[1]
		(1 mark)
		(*)
c)	The nitrate ion, NO ₃ , contains a dative covalent b	ond.
	Complete the following 'dot-and-cross' diagram o	f the bonding in the nitrate ion.
	Use the following code for your electrons:	
	electrons from oxygen x electrons from nitrogen	

added electron(s) responsible for the overall negative charge


Copyright


(b) i)

© 2024 Exam Papers Practice

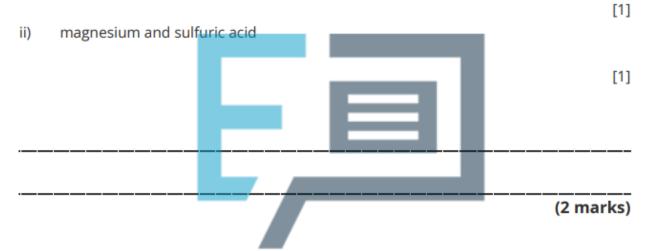
You should include state symbols.

(d) Describe and explain the trend in thermal stabilities of the nitrates of the Group 2 elements.

EXAM PAPERS PRACTICE

Copyright

© 2024 Exam Papers Practice



Question 5.

(a) Magnesium is a Group 2 metal.

Write an equation, including state symbols for the reaction between:

i) magnesium and steam

(b) Magnesium sulfate is soluble in water.

EXAM PAPERS PRACTICE

Describe and explain how the solubilities of the sulfates of the Group II elements vary down the group.

2024 Exam Papers Practice	
	(4 ma

(c) The following table lists some enthalpy changes for magnesium and strontium compounds

Enthalpy change	Value for magnesium / kJ mol ⁻¹	Value for strontium / kJ mol ⁻¹
lattice enthalpy of M (OH) ₂	-2993	-2467
enthalpy change of hydration of M ²⁺ (g)	-1890	-1414
enthalpy change of hydration of OH ⁻ (g)	-550	-550

Use the above data to cal	culate values of ΔH^{θ}_{sol} for Mg(OH) ₂ and for Sr(OH) ₂ .
Mg(OH) ₂	kJ mol ⁻¹
Sr(OH) ₂	kJ mol ⁻¹

EXAM PAPERS PRAC(2 marks) E

(d) இல்/your results from part (c) to suggest whether Sr(OH) ₂ is more or less soluble in water ் நூற்றா/Mg(QH)நுதையூற்று வி other வுரும்கை are the same.
(2 marks)

Question 6.

(a)	This	question is about Group 2 carbonates.	
	Grou	p 2 carbonates can react with acids.	
	i)	Compare the reaction of calcium carbonate with hydrochloric acid and sulfuric acid.	
	ii)	Write an equation for the reaction between calcium carbonate and sulfuric acid,	[2]
		including state symbols.	[1]
		(3 mar)	ks)
(b)		ribe and explain t <mark>he tr</mark> end observed in the thermal st <mark>abil</mark> ity of the carbonates of t p II elements.	E
	оруг	right 24 Exam Papers Practice	
		(3 mar	ks)
(c)	The i	onic radii of three ions are shown in Table 3.1.	
	-	est how the thermal stabilities of zinc carbonate and lead carbonate might comp at of calcium carbonate.	are

Table 3.1

lon	lonic radii (nm)
Ca ²⁺	0.099
Zn ²⁺	0.074
Pb ²⁺	0.120

(2 marks)

- (d) Zinc is found in d block of the Periodic table but is not a transition element.
 - i) Explain why zinc is not classed as a transition element.

ii) Describe three characteristic chemical properties of transition elements that are not shown by Group 2 elements.

Copyright [3]

© 2024 Exam Papers Practice

(4 marks)

Question 7.

(a) This question is about Group 2 hydroxides.

Samples of magnesium, calcium, strontium and barium are reacted with water to form their hydroxides. The resulting solutions are then filtered to collect the precipitates.

Explain the trend in the expected mass for the precipitates.

(2 marks)

(b) Table 4.1 shows the solubility data for the Group 2 metal hydroxides.

Identify the metal hydroxide in the unknown sample.

Table 4.

	Group 2 metal hydroxide	Solubility / g dm ⁻³ at 20 °C	
EΧΑ	Magnesium hydroxide	RS PRAC	TIC
Copyright	Calcium hydroxide	1.730	
	xam strontiverbyProxide ice	17.70	
	Barium hydroxide	38.90	

A student determined that a 50 cm³ solution of an unknown Group 2 metal hydroxide contained 802 mg of the metal hydroxide.

,	,					

(2 marks)

(c)	Write	an equation for the reaction between magnesium hydroxide and sulfuric acid.	
	You s	should include state symbols.	
		(2 ma	rks)
(d)		solubility of Group 2 hydroxides increases going down the group because the alpy of solution, ΔH^{θ}_{sol} , gets more exothermic.	
	i)	Define the term enthalpy of solution, ΔH_{sol}^{θ}	[2]
	ii)	Explain why going down Group 2 the enthalpy of solution, ΔH^{θ}_{sol} gets more exothermic.	[3]
E	X	AM PAPERS PRACTIC	C E
		ight 24 Exam Papers Practice	
		(5 ma	rks)

Question 8.

(a) This question is about magnesium.

Magnesium forms a nitrate, Mg(NO₃)₂ which decomposes on heating as shown below:

$$2Mg(NO_3)_2(s) \rightarrow 2MgO(s) + 4NO_2(g) + O_2(g)$$

Using oxidation numbers, explain why the reaction involves both oxidation and reduction.

The values for the first, second and third ionisation energies of magnesium are shown in Table 1.1.

Copyrig First ionisation energy 738
© 2024 Second ionisation energy 7732

i) Write an equation for the second ionisation energy of magnesium.

[2]

ii) Explain the trend in the first three ionisation energies of magnesium.

[3]

iii) Explain why magnesium has a greater second ionisation energy than barium.

Metal peroxides contain the O-O-ion.
The peroxides of the Group 2 elements, MO ₂ , decompose in a similar way to Group 2 metal carbonates. i) Write an equation for the thermal decomposition of strontium peroxide, SrO ₂ .
ii) Suggest how the temperature at which thermal decomposition of MO ₂ occurs opyrights down Group 2. Explain your answer. 2024 Exam Papers Practice
[3

Question 9.

(a) Table 2.1 below shows the solubility data for the Group 2 metal hydroxides.

Table 2.1

Group 2 metal hydroxide	Solubility / g dm ⁻³ at 20 °C					
Magnesium hydroxide	0.140					
Calcium hydroxide	1.730					
Strontium hydroxide	17.70					
Barium hydroxide	38.90					

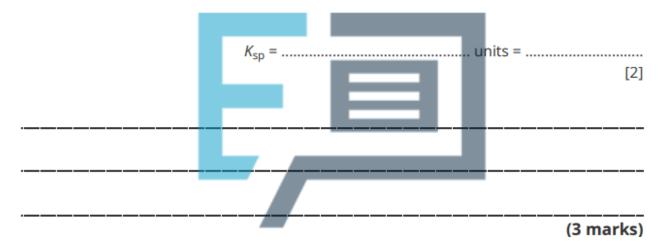
State and explain the factors responsible for the trend in the solubility of the Group 2 hydroxides.

XAM PAPERS PRACTICE

Copyrigh	t					(2	mark	(s)
COPYRIGH	t .							

© 2024 Exam Papers Practice (b) Milk of magnesia, Mg(OH)₂ is used to neutralise stomach acid.

	(2 marks)
Explain my mg(o.1/2 damed se asea to test loi carson aloxide sat sa(o.1/2	
Explain why $Mg(OH)_2$ cannot be used to test for carbon dioxide but $Ba(OH)_2$	can.



(c) i) Write an expression for the solubility product of Sr(OH)₂

$$K_{sp} =$$

[1]

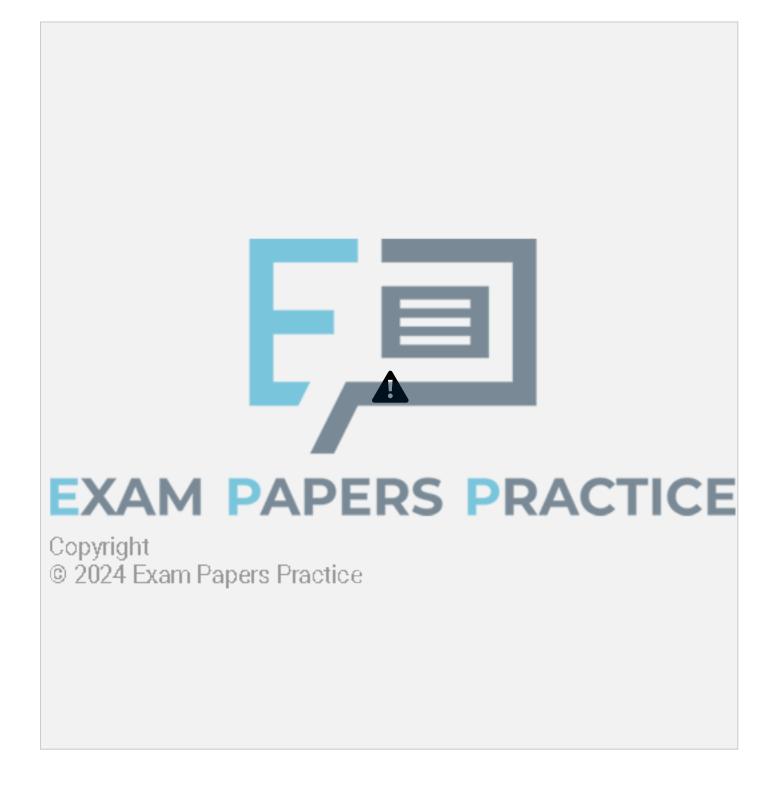
ii) Use the data from Table 3.1 in part (a) to calculate the value of K_{sp} at 293 K. Include units in your answer and show your working.

EXAM PAPERS PRACTICE

Copyright

© 2024 Exam Papers Practice

(d) Use the data from Table 3.1 in part (a) to calculate the pH of a saturated solution of Mg(OH)₂ at 293 K. Show your working.


 $K_{\rm W}$ at 293 K = 0.681 x 10^{-14} mol² dm⁻⁶

EXAM PAPERS PRACTIC

Copyright Question 10 Exam Papers Practice

(b)	Describe and explain the trend that is observed in the thermal decomposition of the Group 2 carbonates.							
(=)		Write an equation to show the equilibrium for the colubility and ust for	(3 marks)					
(c)	1)	Write an equation to show the equilibrium for the solubility product for Include state symbols.	[1]					
	ii)	With reference to your equation in part (c)(i), suggest what is observed cm ³ of concentrated K ₂ CO ₃ (aq) are added to a saturated solution of Ca your answer.	CO ₃ . Explain					
		XAM PAPERS PRAC	TICE					
C	0	pyright 2024 Exam Papers Practice	(3 marks)					
		aCO ₃ has a solubility product, $K_{\rm sp}$ in water at 298 K of 5 x 10 ⁻⁹ mol ² dm ⁻⁶						
	C	alculate the solubility of $CaCO_3$ in water at 298 K, in g dm^{-3}						
		solubility of CaCO ₃ =	g dm ⁻³					
	_		(2 marks)					