

Properties of Transition Metals

These practice questions can be used by students and teachers and is

suitable for GCSE AQA Chemistry topic Questions 8462

Level: GCSE AQA Chemistry 8462

Subject: Chemistry

Exam board: GCSE AQA

Topic: Properties of Transition Metals

Q1.

This question is about metals and metal compounds.

(a) Iron pyrites is an ionic compound.

The diagram below shows a structure for iron pyrites.

Nickel is extracted from nickel oxide by reduction with carbon.

(d) Explain why carbon can be used to extract nickel from nickel oxide.

$$NiO + C \rightarrow Ni + CO$$

Calculate the percentage atom economy for the reaction to produce nickel.

Relative atomic masses (A_r): C = 12 Ni = 59

Relative formula mass (M_r): NiO = 75

Give your answer to 3 significant figures.

Percentage atom economy = _____ %
(3)
(Total 11 marks)

Q2.

Titanium is a transition metal.

Titanium is extracted from titanium dioxide in a two-stage industrial process.

Stage 1 $TiO_2 + 2 C + 2 Cl_2 \rightarrow TiCl_4 + 2 CO$

Stage 2 TiCl₄ + 4 Na \rightarrow Ti + 4 NaCl

(a) Suggest **one** hazard associated with **Stage 1**.

(b) Water must be kept away from the reaction in **Stage 2**.

Give **one** reason why it would be hazardous if water came into contact with sodium.

For more help, please our website www.exampaperspractice.co.uk

(1)

)	Suggest why the reaction in Stage 2 is carried out in an atmosphere of argon and not in air.	
		-
		-
		-
	Titanium chloride is a liquid at room temperature.	
	Explain why you would not expect titanium chloride to be a liquid at room temperature.	
		-
		-
		-
		-
		-
24	ana 2 sodium displaces titanium from titanium chloride	-
5	Sodium atoms are oxidised to sodium ions in this reaction.	
	Why is this an oxidation reaction?	
		-
	Complete the half equation for the oxidation reaction.	
	Na →+	
	In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.	
	The equation for the reaction is:	
	For more help, please our website www.exampaperspractice.co.uk	

 $TiCl_4 + 4 Na \rightarrow Ti + 4 NaCl$

Relative atomic masses (A_r): Na = 23 Cl = 35.5 Ti = 48

Explain why titanium chloride is the limiting reactant.

You **must** show your working.

(4)

(h) For a Stage 2 reaction the percentage yield was 92.3%

The theoretical maximum mass of titanium produced in this batch was 13.5 kg.

Calculate the actual mass of titanium produced.

Mass of titanium = _____ kg

(2) (Total 15 marks)

Q3.

Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes.

The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars.

Age of car	Maximum allowed percentage (%) of exhaust pollutant			
in years	Carbon monoxide	Unburned hydrocarbons		
16-24	0.30	0.02		

	2.40	0.00	0.00	
	3-16	0.20	0.02	
Explain	how carbon m	nonoxide is produce	d when petrol i	s burned in car engine
Suggos	t two rossons	why the maximum	allowed percen	itage of carbon monov
has bee	en decreased f	for newer cars.	allowed percen	hage of carbon monox
1				
2				
Give or	ne reason for h	naving a maximum a	Illowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha	aving a maximum a lust fumes.	Illowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha	aving a maximum a lust fumes.	allowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha	aving a maximum a lust fumes.	Illowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha	aving a maximum a lust fumes.	allowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha rogen are also be how oxides o	pollutants containe	allowed percent d in exhaust fur	age of unburned mes.
Give or hydroca	ne reason for h arbons in exha rogen are also be how oxides	aving a maximum a lust fumes. pollutants containe of nitrogen are proc	Illowed percent d in exhaust fur	age of unburned mes. rol is burned in car en
Give or hydroca	ne reason for h arbons in exha rogen are also be how oxides	aving a maximum a lust fumes. pollutants containe of nitrogen are proc	Illowed percent	age of unburned mes. rol is burned in car en
Give or hydroca	ne reason for h arbons in exha	pollutants containe	allowed percent	age of unburned mes. rol is burned in car en
Give or hydroca	ne reason for h arbons in exha	pollutants containe	allowed percent	age of unburned mes. rol is burned in car en
Give or hydroca	ne reason for h arbons in exha	pollutants containe	allowed percent	age of unburned
Give or hydroca	ne reason for h arbons in exha rogen are also be how oxides be how oxides verters are fitte sphere.	aving a maximum a lust fumes. pollutants containe of nitrogen are proc	allowed percent d in exhaust fur luced when pet	age of unburned mes. rol is burned in car en mount of pollutants rele
Give or hydroca	ne reason for h arbons in exha rogen are also be how oxides be how oxides verters are fitte sphere. n dioxide is an	aving a maximum a just fumes. pollutants containe of nitrogen are proc	allowed percent d in exhaust fur luced when pet	age of unburned mes. rol is burned in car en mount of pollutants rele

(2)

(2)

(1)

(2)

The equation should be balanced.

NC	$D_2(g) \longrightarrow ___ + __ O_2(g)$
ive two effects o onverters.	of atmospheric pollution which are reduced by using catalytic
ne catalyst in cat	talytic converters is a mixture of three elements.
he catalyst in cat here in the perio	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?
he catalyst in cat /here in the perio ick one box.	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?
he catalyst in cat /here in the perio ick one box. Alkali metals	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?
he catalyst in cat Vhere in the perio ick one box. Alkali metals Halogens	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?
he catalyst in cat /here in the perio ick one box. Alkali metals Halogens Joble gases	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?
ne catalyst in cat here in the perio ck one box. Ikali metals lalogens loble gases	talytic converters is a mixture of three elements. odic table are these elements most likely to be found?

(Total 12 marks)

Q4.

Figure 1 shows an outline of the modern periodic table.

Figure 1

J, L, M, Q and R represent elements in the periodic table.

(a) Which element has four electrons in its outer shell?

Tick (\checkmark) one box.

J		L	м	Q	R	
---	--	---	---	---	---	--

(b) Which two elements in Figure 1 are in the same period?

_____ and _____

(1)

(1)

(1)

(1)

(1)

(c) Which element reacts with potassium to form an ionic compound?

Tick (\checkmark) one box.

J		L	м	Q	R	
---	--	---	---	---	---	--

(d) Which element forms ions with different charges?

Tick (\checkmark) one box.

J		L	М	Q	R	
---	--	---	---	---	---	--

(e) Which element has three electron shells?

Tick (\checkmark) one box.

(f) In the 1860s scientists were trying to organise elements.

Figure 2 shows the table published by John Newlands in 1865. The elements are arranged in order of their atomic weights.

Н	Li	Be	В	С	Ν	0
F	Na	Mg	AI	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co,Ni	Cu	Zn	Y	In	As	Se

Figure 2

Br	Rb	Sr	Ce,La	Zr	Di,Mo	Ro,Ru
Pd	Ag	Cd	U	Sn	Sb	Те

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

	Н		1		3			
62	Li	Be	В	С	N	0	F	
27. 	Na	Mg	AI	Si	Р	s	CI	
к	Cu	Ca Zn	? ?	Ti ?	V As	Cr Se	Mn Br	Fe Co Ni
Rb	Ag	Sr Cd	Y In	Zr Sn	Nb Sb	^{Мо} Те	?	Ru Rh Pd

Mendeleev's table became accepted by other scientists whereas Newlands' table was not.

Evaluate Newlands' and Mendeleev's tables.

You should include:

- a comparison of the tables
- reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.

(6) (Total 11 marks)

Q5.

Cobalt forms coloured compounds.

A pink cobalt compound reacts with hydrochloric acid.

The reaction can be represented as:

pink cobalt compound + hydrochloric acid ⇒ blue cobalt compound + water

The forward reaction is endothermic.

When both cobalt compounds are present in a solution at equilibrium, the equilibrium mixture is purple.

(a) What is meant by equilibrium?

(b)	The	equilibrium	mixture	is	cooled.
• •					

Explain what happens to the concentration of the pink cobalt compound.

(3)

(1)

(2)

(c) More hydrochloric acid is added.

Explain what happens to the colour of the equilibrium mixture

- (d) Why does cobalt form different coloured compounds?
- (e) An oxide of cobalt has the formula Co₂O₃

Which cobalt ion is present in this oxide?

Tick (\checkmark) one box.

Co ²⁺	
Co ³⁺	
Co4+	

(f) Cobalt compounds can act as catalysts.

Which two statements about cobalt compounds are correct?

Tick (\checkmark) two boxes.

They allow reactions to reach equilibrium more quickly.

They are reactants in reactions catalysed by cobalt compounds.

They are used up when acting as catalysts.

They increase the equilibrium yield of reactions.

They provide a different reaction pathway.

(2)

(1)

(1)

(g) The reaction of hydrogen with carbon monoxide is catalysed by cobalt metal.Balance the equation for the reaction.

(h) C_6H_{14} is an alkane. What is the formula of an alkane containing 18 hydrogen atoms?

(i) The graph shows a reaction profile diagram for a reaction **without** a catalyst.

On the graph:

- draw the reaction profile diagram for a catalysed reaction
- draw and label an arrow to show the activation energy for the reaction **without** a catalyst.

(2) (Total 16 marks)

Q6.

An atom of aluminium has the symbol ²⁷/₁₃Al

(a) Give the number of protons, neutrons and electrons in this atom of aluminium.

Number of protons

Number of neutrons

Number of electrons

(b) Why is aluminium positioned in Group 3 of the periodic table?

(3)

(1)

(c) In the periodic table, the transition elements and Group 1 elements are metals.

Some of the properties of two transition elements and two Group 1 elements are shown in the table below.

	Transition	elements	Group 1 elements				
	Chromium	Iron	Sodium	Caesium			
Melting point in °C	1857	1535	98	29			
Formula of oxides	CrO Cr ₂ O ₃ CrO ₂ CrO ₃	FeO Fe₂O₃ Fe₃O₄	Na ₂ O	Cs ₂ O			

Use your own knowledge **and** the data in the table above to compare the chemical and physical properties of transition elements and Group 1 elements.

(6) (Total 10 marks)

Q7.

Copper is a transition metal.

(a) (i) Where is copper in the periodic table?

Tick (✓) one box.

in the central block

in	Group	1

in the noble gas group

(ii) What is a property of copper?

Tick (✓) one box.

breaks easily

conducts electricity

does not conduct heat

(b) Copper ores are quarried by digging large holes in the ground, as shown in Figure 1.

Figure 1

© photllurg/iStock/Thinkstock

Give two reasons why quarrying is bad for the environment.

For more help, please our website www.exampaperspractice.co.uk

(1)

(c) Some copper ores contain only 2% copper.

Most of the ore is rock that is not needed.

In one ore, the main compound is copper carbonate (CuCO₃).

Figure 2 shows the stages used in the extraction of copper from this ore.

Figure 2

(i) Why is **Stage 2** important?

Calculate the mass of carbon needed to make 127 tonnes of copper.

opper carbonate	+	carbon		copper	+	carbon dioxide
47 tonnes		ton	nes	127 tonnes	;	132 tonnes
(iii) Suggest or of reactant	ne r s in	eason why it Stage 3 .	is important	for the compa	any to	calculate the mass
		U				
						(Total 8 m

Q8.

This question is about metals.

Figure 1 shows the metals used to make pylons and the wires of overhead cables.

(a) An ore contains a metal compound.

A metal is extracted from its ore in three main stages, as shown in Figure 2.

Figure 2

Explain why Stage 2 needs to be done.

(b) Cast iron from a blast furnace contains 96% iron and 4% carbon.

(i) Cast iron is not suitable for the manufacture of pylons.

Give one reason why.

(ii) Most cast iron is converted into steel, as shown in **Figure 3**.

Describe how cast iron is converted into steel.

Use Figure 3 to help you to answer this question.

For more help, please our website www.exampaperspractice.co.uk

(2)

Alur	minium and copper are good conductors of electricity.
(i)	State one property that makes aluminium more suitable than copper for overhead cables.
(ii)	How can you tell that copper is a transition metal and aluminium is not a transition metal from the position of each metal in the periodic table?
(iii)	Copper can be extracted from solutions of copper salts by adding iron.
	Explain why.

Q9.

(a) Use the periodic table on the Data Sheet to help you answer these questions.

Part of the periodic table is shown below.

The letters are **not** the symbols of the elements.

	A															
в												С				
							D									
															Е	
												F				

Choose your answers **only** from the letters shown in the periodic table above. Which letter, **A**, **B**, **C**, **D**, **E** or **F**, represents

(i)	hydrogen	Letter	
(ii)	a Group 3 element	Letter	(1)
(iii)	a halogen	Letter	(1)
(iv)	the element with atomic (proton) number of 7	Letter	(1)
(v)	an element with one electron in its outer shell?	Letter	(1)

(b) The table shows the melting points of the Group 1 metals arranged in alphabetical order.

Group	1 metal	
Name	Symbol	Melting point in °C

Caesium	Cs	29
Francium	Fr	27
Lithium	Li	180
Potassium	К	64
Rubidium	Rb	39
Sodium	Na	98

(i) Arrange these metals in order of increasing melting point. Three have been done for you.

Fr	Cs	 	 Li	
Lowest				— → Highest

(ii) Use the periodic table on the Data Sheet **and** your answer in part (b)(i) above to complete this sentence about how the melting points change.

Going down Group 1, the melting points _____

(c) The transition metals are a block of elements between Groups 2 and 3 of the periodic table. Transition metals have different properties to Group 1 metals.

Put ticks (\checkmark) next to the **three** correct statements about transition metals in the table below.

Statement		
They are harder than Group 1 metals		
They have lower densities than Group 1 metals		
They have higher melting points than Group 1 metals		
They are more reactive with water than Group 1 metals		
They often form coloured compounds but Group 1 compounds are usually white		

(3) (Total 10 marks)

Q10.

(1)

(1)

Sodium is a Group 1 element.

(a) (i) A small piece of sodium is added to some water containing Universal Indicator solution.

Describe what you would see happening. (3) (ii) Complete and balance the equation for the reaction of sodium with water. Na H₂O H_2 + + \rightarrow (2) (b) Francium is the most reactive element in Group 1. Explain why in terms of electronic structure. (3) The transition elements have different properties from the elements in Group 1. (c) Give **two** of these different properties of transition elements. 1. _ 2. (2)

Q11.

The periodic table on the Data Sheet may help you to answer some of these questions.

- (a) Draw a ring around the correct answer to complete these sentences.
 - (i)

Dimitri Mendeleev attempted to classify

compounds. elements. mixtures.

(1)

(ii)

He arranged them in order of their

atomic weight.
boiling point.
electrical conductivity.

aio waiaht

(1)

(iii)

They are now arranged in order of their

atomic (proton) number. atomic weight.

mass number.

(1)

- (b) In the periodic table between Groups 2 and 3 there is a block of metals which includes chromium, iron and nickel.
 - (i) Which **one** of the following is the correct name for this block of metals?

Draw a ring around the correct answer.

alkali metals	reactive metals	transition metals	
			(1)

(*)

(ii) The properties of iron and those of the Group 1 metal sodium are different.

Put a tick (\checkmark) next to the two correct phrases which could complete the following sentence.

Compared to sodium, iron

has a higher melting point.		
has a lower density.		
is harder.		
is more reactive.		
is weaker.		

(2) (Total 6 marks)

Q12.

When electricity passes through a thin wire, the wire gets hot. If the wire gets very hot, it may glow. This idea is used in filament lamps.

(a) The table shows some metals and their melting points.

Metal	Melting point in °C	
Aluminium	660	
Copper	1084	
Iron	1540	
Tungsten	3410	

Which metal in the table should be used to make the wire in a filament lamp?

Give a reason for your answer.

(b) The table shows some gases.

Gas
Argon
Carbon dioxide
Oxygen
Sulfur dioxide

Which gas in the table should be used in a filament lamp?

Give a reason for your answer.

(2) (Total 4 marks)

Q13.

The properties of transition metals make them useful elements.

(a) Why is copper used for electrical wiring?

(b) Why is iron used for girders in buildings?

(c) Why are transition metal compounds added to glazes for pottery?

(1) (Total 3 marks)

Q14.

Niobium is a typical transition metal.

Put a tick (\checkmark) next to each of the **four** properties in the table that you would expect for Niobium.

Property	
brittle	
conducts heat	
dull	
forms coloured compounds	
high melting point	
low boiling point	

strong	
very reactive	

(Total 4 marks)

Q15.

Transition elements and their compounds have many uses.

Iron oxide and cobalt oxide have been added to the glazes on pottery for hundreds of years.

(a) State why transition metal oxides are added to pottery glazes.

(1)

(b) Use the table of ions on the Data Sheet to help you work out the formula of iron(III) oxide.

(1)

- (c) Cobalt oxide is reacted with hydrogen to form cobalt.
 - (i) Balance the equation for this reaction.

 Co_3O_4 +H₂ \rightarrow 3 Co +H₂O

(1)

(ii) Cobalt is mixed with other transition metals to make alloys.

These alloys are used to make cutting tools which remain sharp at very high temperatures. They can cut through other metals.

Suggest two properties of transition metals that make them suitable for making cutting tools.

	(Total 5 marl

Q16.

The extract below was taken from a leaflet on the uses of platinum. One of the uses described was in making electrodes for spark plugs in car engines. The spark plug produces the spark which ignites the fuel in the engine.

Spark Plugs			
The electrodes in a spark plug have to conduct electricity very well. Since they project into the combustion chamber of the engine, they must also be able to withstand extremely high temperatures in a very corrosive atmosphere.			
Nickel-based plugs have been produced for many years. They only last a fairly short time. As the electrodes wear, combustion becomes less efficient and the petrol is not burnt completely.			
Platinum and other precious metals can now be used in spark plugs. These last much longer and are more efficient. This can help to reduce air pollution.			

		MELTING POINT (° C)	BOILING POINT (° C)	POSITION IN REACTIVITY SERIES	COST (£/kg)
	nickel	1455	2920	Higher than gold	2.5
	platinum	1769	4107	below gold	6110

The table below gives some information about platinum and nickel.

Compare nickel and platinum for use in making the electrodes in spark plugs. (a)

A good answer should give advantages and disadvantages of each metal linking these to the properties of the metals. Marks will be given for the way in which you organise your answer.

You will need a sheet of lined paper.

(8)

(b) Describe the structure and bonding in metals. (i)

(3) (ii) Explain why metals such as nickel and platinum are good conductors of electricity. (2) (Total 13 marks)

Q17.

The table shows the % composition by mass of modern British coins.

COIN	% COMPOSITION BY MASS			
	copper	nickel	tin	zinc
£1	70	5.5	_	24.5
20p	84	16	_	_
5p, 10p, & 50p				
1p &2p (until 1991)	97	-	0.5	2.5
1p &2p (1992 onwards)	Copper plated steel			

(a) Use the Data Sheet to help you to complete the table by filling in the information about 5p, 10p and 50p coins which are made of cupronickel.

(b) Shade the pie chart to represent the % of copper in a £1 coin.

- (i) all these coins,
- (ii) a £1 coin but **not** in a 20p coin.
- (d) The following is a list of properties.
 - bends easily
 - good conductor of electricity
 - hard
 - high melting point
 - poor conductor of heat
 - unreactive

From this list, choose two properties which coinage metals should have. For each property, give a reason for your answer.

Property 1	 		
Reason	 	 	
Property 2	 	 	
-			
Reason	 	 	

(1)

(1)

(1)

(1)

Q18.

- (a) What is the name given to the block of elements in the middle of the Periodic Table which includes vanadium?
- (b) Some of the properties of vanadium are shown in this list.
 - It has a high melting point.
 - It is a solid at room temperature.
 - It is a conductor of electricity.
 - It is a good conductor of heat.
 - It forms coloured compounds.
 - If forms crystalline compounds.
 - It forms compounds that are catalysts.

Select two properties, from the list above, which are not typical of a Group 1 metal.

1._____ 2._____

(2) (Total 3 marks)

Q19.

The word box contains the names of some metals.

aluminium coppe	r iron	manganese	e zinc
-----------------	--------	-----------	--------

(i) The drawing shows the view from a window. Choose from the names of metals in the box to complete the **three** spaces.

(3)

(ii) What is the name of the metal in the word box which has the chemical symbol Fe?

(1)

(iii) What is the name of **one** metal in the word box which often has coloured compounds?

(1) (Total 5 marks)

Mark schemes

Q1.	FeS.
(d)	do not accept equations
(b)	26
	30
	26
	must be this order
(c)	 any two from: iron has a high(er) melting / boiling point iron is dense(r) iron is hard(er) allow iron is less malleable / ductile
	 iron is strong(er) iron is less reactive allow specific reactions showing difference in reactivity
	 iron has ions with different charges iron forms coloured compounds iron can be a catalyst allow iron is magnetic allow the converse statements for sodium allow transition metal for iron allow Group 1 metal for sodium ignore references to atomic structure ignore iron rusts
(d)	carbon is more reactive (than nickel) allow converse
	(so) carbon will displace / replace nickel (from nickel oxide) allow (so) nickel ions gain electrons
	or (so) carbon will remove oxygen (from nickel oxide) <i>allow (so) carbon transfers electrons to nickel</i> <i>(ions)</i>

(e) (total M_r of reactants =) 87

(percentage atom economy)

$$=\frac{59}{87}\times 100$$

allow (percentage atom economy) = $\frac{59}{in correctly calculated M_r} \times 100$

1

1

1

1

1

1

= 67.8 (%)

allow an answer from an incorrect calculation to 3 sig figs

an answer of 67.8 (%) scores **3** marks an answer of 67.8160919 (%) or correctly rounded answer to 2, 4 or more sig figs scores **2** marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps

Q2.

(a) chlorine is toxic

allow carbon monoxide is toxic allow poisonous for toxic ignore harmful / deadly / dangerous allow a poisonous gas is used / produced allow titanium chloride is corrosive

(b) any **one** from:

very exothermic reaction

allow explosive allow violent reaction ignore vigorous reaction ignore sodium is very reactive

- produces a corrosive solution
 allow caustic for corrosive
 - ignore alkaline
- produces hydrogen, which is explosive / flammable allow flames produced ignore sodium burns
- (c) argon is unreactive / inert allow argon will not react (with reactants / products / elements)

	oxygen (from air) would react with sodium / titanium	
	water vapour (from air) would react with sodium / titanium allow elements / reactants / products for sodium / titanium	
		1
(d)	metal chlorides are usually ionic	
	allow titanium chloride is ionic	1
	(so)(metal chlorides) are solid at room temperature	
	(so)(metal chlorides) have high melting points	
	allow titanium chloride for metal chlorides	1
	(because) they have strong (electrostatic) forces between the ions ignore strong ionic bonds	
	or	
	(but) must be a small molecule or covalent	
	allow molecular	1
	allow alternative approach:	
	titanium chloride must be covalent or has small molecules (1)	
	with weak forces between molecules do not accept bonds upless intermolecular	
	bonds(1)	
	(but) metal chlorides are usually ionic (1)	
(e)	sodium (atoms) lose electrons	
	do not accept references to oxygen	1
(f)	Na → Na+ + e-	
(')	do not accept e for e⁻	
		1
(g)	$(M_{\rm r} \text{ of TiCl}_4 =) 190$	
	(moles Na = $\frac{20000}{23}$ =) 870 (mol) *	
		1
	(moles TiCl ₄ = $\frac{40000}{190}$ =) 211 (mol) *	
	*allow 1 mark for 0.870 mol Na and 0.211 mol TiCl₄	1
	allow use of incorrectly calculated M_r from step 1	
	either	

(sodium is in excess because) 870 mol Na is more than the 844 mol needed or

(because) 211 mol TiCl₄ is less than the 217.5 mol needed

the mark is for correct application of the factor of *4*

other correct reasoning showing, with values of moles or mass, an excess of sodium or insufficient TiCl₄ is acceptable allow use of incorrect number of moles from steps 2 and / or 3

alternative approaches:

approach 1:

 $(M_r \text{ of } TiCl_4 =) 190(1)$

(40 kg TiCl_r needs)

(=) 19.4 (kg) (1)

so 20 kg is an excess (1)

approach 2:

(*M*_r of TiCl₄ =) 190(1) (20 kg Na needs)

$$\frac{20}{4\times23}\times190\,(kg\,TiCl_4\,)\,(1)$$

(=) 41.3 (kg) (1) so 40 kg is not enough (1)

$$(actual mass =) \frac{92.3}{100} \times 13.5$$

(h)

or

(actual mass =) 0.923 × 13.5

1

1

=	12.5 (kg)	
	allow 12 / 12.46 / 12.461 / 12.4605 (kg)	1
	an answer 12.5 (kg) scores 2 marks	1
		[15]

Q3.

(b)	any two from:	
	(because) insufficient / limited oxygen supply	1
(a)	incomplete combustion	1

carbon monoxide toxic / poisonous

allow description of how carbon monoxide is toxic / poisonous ignore carbon monoxide is harmful / dangerous / deadly

- greater public concern / awareness about pollution ignore comments about the effects of other pollutants ignore unspecified comments about carbon monoxide pollution
- more cars so otherwise there would be more carbon monoxide entering atmosphere

2

1

1

1

2

- improved engine technology
- catalytic converters have been introduced
- (c) any **one** from:
 - (to reduce) health problems

allow (to reduce) specified health problems e.g. breathing difficulties, asthma, lung cancer

- (to reduce) global dimming allow (to reduce) the effects of global dimming e.g. reduced light levels allow (to reduce) smog allow (to reduce) the formation of particulates ignore global warming do **not** accept to reduce soot
- (d) nitrogen (from atmosphere) reacts with oxygen (from atmosphere)

at high temperature (in engine) ignore heat / hot

or with a spark (from spark plug)

 $\begin{array}{l} \textbf{2} \ \text{NO}_2 \longrightarrow \text{N}_2 + \textbf{2} \ \text{O}_2 \\ allow \ multiples \\ \textit{if incorrect, allow N}_2 \ \textit{for 1 mark} \end{array}$

(f) any **one** from:

(e)

acid rain

allow specific effects of acid rain

• respiratory problems allow specific respiratory problems e.g. breathing

difficulties, asthma

carbon monoxide

	global dimming or smog	2
	max 1 mark if global warming mentioned	-
(g)	transition metals	1
		[12]
Q4.		
(a)	J	1
(b)	M and Q	
	either order	1
(c)	Q	1
(d)	Μ	
		1
(e)	L	1

(f) Level 3 (5-6 marks):

A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

Level 2 (3-4 marks):

Some logically linked reasons are given. There may also be a simple judgement.

Level 1 (1-2 marks):

Relevant points are made. They are not logically linked.

Level 0 No relevant content

Indicative content

comparative points

- both tables have more than one element in a box
- both have similar elements in the same column
- both are missing the noble gases
- both arranged elements in order of atomic weight

advantages of Mendeleev / disadvantages of Newlands

- Newlands did not leave gaps for undiscovered elements
- Newlands had many more dissimilar elements in a column
- Mendeleev left gaps for undiscovered elements
- Mendeleev changed the order of some elements (e.g. Te and I)

points which led to the acceptance of Mendeleev's table

- Mendeleev predicted properties of missing elements •
 - elements with properties predicted by Mendeleev were discovered
- Mendeleev's predictions turned out to be correct •
- elements were discovered which fitted the gaps •

6

Q5.		
(a)	in a closed system	1
	the rate of the forward and backward reactions are equal	1
(b)	concentration increases	1
	(because) reaction / equilibrium moves to the left / reactant side	1
	(since the) reverse reaction is exothermic allow (so that) temperature increases	1
(c)	becomes blue	1
	(because) reaction / equilibrium moves to the right / product side	1
	(so) concentration of blue cobalt compound increases allow (so that) concentration of hydrochloric acid decreases	1
(d)	(cobalt has) ions with different charges allow (cobalt is a) transition metal	1
(e)	Co ³⁺	1
(f)	they allow reactions to reach equilibrium more quickly	1
	they provide a different reaction pathway	1
(g)	$\begin{array}{rcl} \textbf{13}H_2 & \textbf{+} & \textbf{6}CO & \rightarrow & C_6H_{14} & \textbf{+} & \textbf{6}H_2O \\ & allow \ multiples \end{array}$	1
(h)	C ₈ H ₁₈	1
(i)	curve below printed curve do not accept different reactant or product levels	I

vertical arrow from reactant level to peak of printed curve

Q6.

(a)	13 (protons)	
	The answers must be in the correct order.	
	if no other marks awarded, award 1 mark if number of protons and electrons are equal	
		1
	14 (neutrons)	1
	13 (electrons)	1
(b)	has three electrons in outer energy level / shell	
		1

(c) Level 3 (5–6 marks):

A detailed and coherent comparison is given, which demonstrates a broad knowledge and understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.

Level 2 (3–4 marks):

A description is given which demonstrates a reasonable knowledge and understanding of the key scientific ideas. Comparisons are made but may not be fully articulated and / or precise.

Level 1 (1–2 marks):

Simple statements are made which demonstrate a basic knowledge of some of the relevant ideas. The response may fail to make comparisons between the points raised.

0 marks:

No relevant content.

[16]

1

1

Indicative content

Physical

Transition elements

- high melting points
- high densities
- strong
- hard

Group 1

- low melting points
- low densities
- soft

Chemical

Transition elements

- low reactivity / react slowly (with water or oxygen)
- used as catalysts
- ions with different charges
- coloured compounds

Group 1

- very reactive / react (quickly) with water / non-metals
- not used as catalysts
- white / colourless compounds
- only forms a +1 ion

[10]

6

Q7.

(a)	(i)	central block	1
	(ii)	conducts electricity	1
(b)	any • •	two from: visual pollution noise pollution dust pollution habitat destruction.	2
(c)	(i)	to concentrate the ore / copper carbonate or to remove / separate the rock	1
	(ii)	12 (tonnes) If answer is incorrect allow one mark for (127 + 132) – 247 or 259 - 247	2
	(iii)	 any one from: so no reactant is wasted / left unreacted so they know how much product they will make need to record / compensate for the carbon dioxide produced 	

allow so they can work out their carbon footprint.

[8]

1

Q8.

(a)	The ore is not pure or contains impurities or the ore does not contain 100% of the metal compound			
		allow to concentrate the metal or metal compound	1	
	rock	/ other compounds need to be removed / separated	1	
(b)	(i)	(cast iron is) brittle allow not strong ignore weak	1	
	(ii)	the oxygen reacts with carbon allow carbon burns in oxygen or is oxidised	1	
		reducing the percentage of carbon in the mixture or producing carbon dioxide	1	
(c)	(i)	aluminium has a low density	1	
	(ii)	(because copper) is in the central / middle (block of the periodic table)	1	
		whereas aluminium is in Group 3 (of the periodic table)	1	
	(iii)	iron is more reactive (than copper) ignore cost	1	
		so copper is displaced / reduced	1	[10]

Q9.

(a)	(i)	Α	1
	(ii)	F	1
	(iii)	Е	1
	(iv)	С	1

			EXAM PAPERS PRACTICE	
	(v)	A o	r B	1
(b)	(i)	Rb	K Na allow rubidium, potassium, sodium do not accept RB or NA	1
	(ii)	decr	ease	
	or			
	beco	ome lo	wer / smaller / less allow from 180° C to 27° C	1
(c)	The	y are l	harder than Group 1 metals.	1
	They have higher melting points than Group 1 metals.			
	The	y ofter	ι form coloured compounds but Group 1 compounds are usually wh	nite. 1
Q10. (a)	(i)	UI /	solution turns blue / purple <i>allow violet / lilac</i> two from:	1
		•	floats	
		•	melts / forms a sphere	
		•	moves note: moves on surface = 2 marks (points 1 and 3)	
		•	effervescence / fizz / bubbles / gas ignore the name of the gas	
		•	(yellow) flame ignore sparks / ignites / burns allow dissolves	
		•	reduces in size ignore 'reacts violently' unqualified ignore reference to exothermic / heat evolved	2
	(ii)	2 Na	+ $2H_2O \rightarrow 2NaOH + H_2$ correct equation = 2 marks	_

[10]

		allow correct multiples / fractions	
		if this equation is unbalanced,	
		allow 1 mark for NaOH	2
			2
(b)		it = francium	
		outer electron / shell / energy level must be mentioned once for all 3 marks	
	biggest ato (number of	m or (outer) shell / energy level / electron furthest from nucleus o) shells	most
		, ,	1
	least attrac	tion (to nucleus) or most shielding	
		allow the attraction is <u>very</u> weak	
		do not allow less magnetic / gravitational attraction	1
	(outer) elec	ctron more easily lost / taken	
	()	ignore francium reacts more easily / vigorously	1
(c)	any two from:		
	·	ignore other properties / specific reactions	
		they / it = transition elements	
transition elements:			
	allow if state group 1 elements		
	high melting point or high boiling point		
		 low melting point or low boiling point 	
	• high o	density	
		low density	
	• strong	g / hard	
		weak / soft	
	not ve	ery reactive	
		reactive	
	 cataly 	/sts	
		not catalysts	
	• ions ł	nave different charges	
		• +1 ions	
	• colou	red compounds	
		white compounds	•
			2

Q11.			
(a)	(i)	elements	1
	(ii)	atomic weight	1
	(iii)	atomic (proton) number	1
(b)	(i)	transition metals	1
	(ii)	has a higher melting point is harder	2

[6]

Q12.

(a)	tungsten	1	
	has the high(est) melting point accept that metals other than tungsten		
	are likely to melt	1	
(b)	argon	1	
	is an unreactive gas		
	accept that gases other than argon are reactive accept that argon is a noble gas or in Group 0	1	[4]
Q13. (a)	(good)conductor of electricity		
()	conductor of electricity and heat $(+/-) = 0$		
	accept can be drawn into wires or ductile		
	ignore flexible	1	
(b)	strong		
	accept tough or mard or might tensile strength	1	
(c)	reference to <u>colour</u>	1	
		[[3]

Q14.

				EXAM PAPERS PRACTICE	
	cond	ucts h	eat	list principle applies after 4 ticks	1
	form	is colo	oured o	compounds	1
	high melting point				
	stroi	ng			
Q1	5. (a)	colo	ur		1
	(b) Fe ₂ O ₃ or ()₃ or (F	e ³⁺)² (O²-)₃ 2 and 3 should be below halfway on Fe and O	1
	(c)	(i)	44	or correct multiples	1
		(ii)	any t	wo from: <i>ignore references to malleable / ductile / conductivity / stiff /</i> <i>boiling point / density</i> high melting point <i>accept can withstand high temperatures</i> strong / tough <i>accept not brittle</i>	
			•	hard do not accept flexible	
			•	not (very) reactive	2

[5]

[4]

Q16.

(a) 8 marks Particularly well structured answer with most points mentioned.

7-6 marks Well structured answer. The two metals will have been compared rather than simply listing advantages/disadvantages. Most of the advantages and disadvantages of each metal have been mentioned.

5-3 marks Some structure to the answer. An attempt to compare the metals by giving some advantages and disadvantages.

2-1 marks Little structure or attempt to compare. Marks gained by listing a few advantages or disadvantages.

Advantages of Nickel:

Relatively low cost which makes the sparking plugs cheaper to produce. Quite high melting point which is needed because the temperature in the engine is very high.

Good conductor of electricity needed to carry electricity into combustion chamber to produce spark.

Disadvantages of Nickel:

Subject to corrosion in engine which means they only last a short time *because nickel is higher in reactivity than platinum.* Idea that this leads to reduced efficiency, unburnt petrol and air pollution.

Advantages of Platinum:

Less susceptible to corrosion (not corroded) because platinum is very low in reactivity.

Idea that this improves efficiency and reduces pollution.-

Higher melting point than nickel to withstand the high temperatures in the combustion chamber.

Last a lot longer than nickel electrodes due to low reactivity.

(Sensible extension here could be longer service intervals etc.)-Good conductor of electricity as for nickel.

Extension here could be linked to the idea that the conductivity does not deteriorate as quickly as nickel.)

Disadvantages of Platinum:

Cost which will make the sparking plug more expensive. A good candidate might justify cost by longer life, better fuel consumption and less pollution.

(b) (i) giant structure/lattice/regular arrangements of atoms any for 1 mark

> of atoms/of ions (provided free electrons mentioned) either for 1 mark

delocalised or free electrons for 1 mark

(ii) electrons free/can move for 1 mark each

Q17.

(a) 75% Cu, 25% Ni

for 1 mark

(b) 70% segment shaded

3

2

1

		for 1 mark	
	(i)		1
(C)	(I) copt	for 1 mark	1
	(ii) zinc	for 1 mark	1
(d)	1. har	d so will not wear away/scratch for 1 mark	1
	2. unr so do acce (not o	eactive bes not corrode/dissolve/or other ptable reason does not react unless acceptable reason)	
	(If given ha	ard and unreactive allow 1 mark) for 1 mark	1
Q18.			
(a)	(a) transition / transitional metals / elements / d-block for one mark		
(b)	coloured catalyst		
	(<i>accept</i> hi	gh melting point) <i>for 1 mark each</i>	2
Q19. (i)	zinc	accept Zn	1
	iron only	accept Fe	1
	copper	accept Cu do not credit iron	1

[6]

[3]

(ii) iron

(iii) copper **or** iron or manganese accept Cu **or** Fe **or** Mn

[5]

1

1