
 OCR A level Computer Science notes

The characteristics of contemporary

processors, input, output and storage

devices

Spec reference:

(a) The Arithmetic and Logic Unit; ALU, Control Unit and Registers (Program Counter;

PC, Accumulator; ACC, Memory Address Register; MAR, Memory Data Register; MDR,

Current Instruction Register; CIR). Buses: data, address and control: how this relates

to assembly language programs.

What does the ALU do? It’s in the name, it does arithmetic and

logical operations

What does the CU do? It sends control signals to coordinate the

movement of data around the processor

What does the program counter do? It stores the address of the

next instruction to be processed

What does the accumulator or ACC do? It stores the results of the

processing

What does the MAR do? It stores the address of the data or

instruction to be fetched from memory

What does the MDR do? It stores data from memory and acts as a

buffer

What does the CIR do? Stores the instruction currently being

executed sent by the MAR

What does the address bus do? Sends the address of the data or

instruction from the MAR in the processor to memory

What does the control bus do? Sends control signals from the CU to

the components of the computer

What does the data bus do? Sends data between the processor and

the memory

Right you looked at this, now you need to learn about something

called program branch.

Program branch is when there is a branch instruction in the CIR so

the contents of the PC are changed to the contents of the operand in

the CIR (The CIR is split into the operand and opcode and you will

learn it in the next page)

Spec reference:

(b) The Fetch-Decode-Execute Cycle; including its effects on registers.

Again let’s go back to our good old diagram

What happens in the Fetch Execute Cycle and its effects on registers

will be broken down into steps, read these carefully and look at the

diagram to make sure you know what is being said

1. The PC contains the address of the next instruction to be

processed, the contents of the PC(Which is basically the

address of the next instruction) are copied to the MAR.

2. The MAR sends the address of the instruction to be fetched

from memory via the data bus to the memory where it waits

for a control signal from the CU

3. The CU sends a control signal through the control bus into the

memory to do a memory read in order to fetch the instruction

from the address given by the MAR

4. You got it so far? If you are lost read the first three steps again

as the next ones WILL confuse you if you don’t understand the

first three

5. The instruction is fetched and the data bus carries it to the CIR,

not the MDR as it’s not data.

6. The instruction in the CIR is split into two parts, opcode which

are the commands and the operand which is the actual data or

address to be used

7. The CIR sends the address to the MAR which sends the address

of the data(The reason why it’s not an instruction anymore is

because the CIR now needs the data as it already has the

instruction) to be fetched from the memory

8. At this point the PC increments

9. Step three is repeated except it’s not instruction, it’s data now

10. Still alive? If not read through the previous points again and do

not read them in a rush, take your time

11. The data is fetched from memory and sent to the MDR

(Since it’s data this time not an instruction therefore it goes to

the MDR not the CIR) via the data bus

12. The contents of the MDR are then copied into the ACC

Well moving on we will be looking at some factors affecting CPU

performance. Yay.....or not as you are going back to GCSE

Spec reference:

(c) The factors affecting the performance of the CPU: clock speed, number of cores,

cache.

Factors affecting CPU performance:

Clock speed: The higher the clock speed, the more cycles can

be done per second. However, this can cause more heat to be

produced from the computer therefore a cooling fan needs to

be purchased and this costs money

Cache: Memory located closer to the CPU than RAM, it holds

instructions and data so that the CPU does not have to do a

memory re-read to re-fetch instructions or data

Number of cores: The higher the number of cores, the more

instructions can be processed at the same time per second

Spec reference:

(d) The use of pipelining in a processor to improve efficiency.

No we are not talking about fixing pipes

What does pipelining mean? Is when the instruction is fetched

whilst the previous one is being decoded and the one before

that is being executed

What are some of the problems with pipelining?

• Only works if the subsequent instructions can be predicted

• The pipe may flush, meaning if the wrong instruction is

fetched it will have to be thrown away and the correct one

has to be fetched whilst the previous instruction is being

decoded

Spec reference:

(e) Von Neumann, Harvard and contemporary processor architecture.

In this section we will be talking about what a Hungarian dude did

and what a British or American I dunno what the other guy’s

nationality is.

What are the features of Von Neumann?

• Instructions and data are stored together in the same

memory

• Instructions and data are stored in the same format

• Instructions are executed sequentially

What are the features of Harvard?

• Instructions and data are stored in separate memories

• The instructions and data each have their own bus

• Used by RISC processors

Now on to some contemporary architectures.

SIMD (Single Instruction Multiple Data) - As the name suggests

this is when a processor processes the same instruction on

multiple data sites.

Example of where this might be used? Loading computer

graphics on a video game

MIMD (Multiple Instruction Multiple Data) - Again just look at

the name, this is when a processor processes multiple

instructions on multiple data sites

Distributed computing/system - This is when multiple

computers work together to process a single instruction

Spec reference:

(a) The differences between and uses of CISC and RISC processors

What are some of the uses of CISC processor?

Well to put it simply, they are used in laptops and desktop

computers

What are some of the uses of the RISC processor?

Again to put it simply, they are used in smartphones and tablets

CISC vs RISC

CISC RISC

Has more complex hardware Has simpler hardware

It’s more expensive It’s more cheaper

Takes multiple machine cycles

to complete a single

instruction

Takes just one machine cycle

to complete one instruction

Has greater energy

consumption

Has lower energy

consumption

Processes more complex

instructions (Hence the name)

Processes more simpler

instructions

Can’t support pipelining Can support pipelining

Put it like this yeah, just think of the CISC as the bad processor and

the RISC as the good one, why? Well if you look at the table RISC is

better in every aspect compared to the CISC EXCEPT the part of where

the CISC can process complex instructions and RISC can’t

Spec reference:

(b) GPUs and their uses (including those not related to graphics).

How do GPUs compare to CPUs? They run slower and have

fewer features than CPUs

What do GPUs do? They excel at doing simple operations on

large sets of data. They are also very efficient (Posh way of

saying good) at manipulating computer graphics and image

processing

Where are they used? They are used in computers,

smartphones and game consoles

Spec reference:

(c) Multicore and Parallel systems.

Multicore system - These are processors with two or more

cores, each core is capable of processing one instruction and

they all process instructions at the same time. Keep in mind this

DOES NOT mean faster speed of processing

Parallel system – This is a processor that splits the job of

processing an instruction between multiple cores, this results in

faster processing speed

Spec reference:

(a) How different input, output and storage devices can be applied to the solution of

different problems.

In the exam you will be given a scenario and will be expected to use

your brain in deciding which is the best input/output/storage device

for that situation often justifying your reasoning.

What is an input device? It is a device which allows you to input

data into the system

What is an output device? It is a device which displays the

results of the processing to the user

What is a storage device? A peripheral device which stores data

for long term and short-term storage

Input devices:

• Keyboard:

Nice and easy, allows you to input data into the computer.

• Mouse:

Again nice and easy one, allows you to input data into the

computer.

• Microphone:

Allow you to input your voice into the computer.

• Sensors:

These are devices which detect changes in the environment

like changes in temperature, pressure, position, acceleration

etc... and send it to a computer.

Examples of sensor devices would be a thermometer and a

measuring balance

• Keypad:

Allow you to type in data into a security door, ATM etc...

• Specialist keyboard:

Like the name suggests, it is a keyboard specialised to a

person’s needs. An example would be a braille keyboard

which allows a person to feel the characters they are typing

in

A really weird keyboard indeed, wonder who uses that....

• Touchpads:

Again same as keyboard except it allow you to see the results

of the processing as well so it can be used as a output device

too

• Remote controls:

Same as keyboard but is wireless so it can be used to input

data from a distance without the need to connect anything

• Scanner:

Scans images, printed texts, handwriting or objects and

converts them into a digital image

This is a scanner

• Camera/webcams:

Used to input moving motions into a computer.

• Touch screens:

Do I even need to say?

• Barcode reader:

Like the name suggests, they are used to read barcodes

A barcode scanner in a supermarket

• Magnetic Stripe Reader:

A device which reads information enclosed in magnetic strips

found at the back of special cards such as bank cards

Output devices:

• Monitor:

Displays the results of the processing to the user infront of

their eyes (Well you don’t actually need to say this but you

get what I mean)

• Printer:

Outputs physical copies of digital documents and texts

• Speakers:

Outputs sound

• Headphones:

Mini speakers that you can put in your ears basically

• Digital projector:

Displays an enlarged image on a screen, they are usually

found in 21st century schools and theatres

• Plotter:

A printer used to print out graphics

• Actuators:

A device which moves a system or mechanism

Spec reference:

(b) The uses of magnetic, flash and optical storage devices

Magnetic storage

Advantages of magnetic storage:

• It’s cheap

• Has a large storage space

Disadvantages of magnetic storage:

• Has slow access times

• It’s fragile

Examples of magnetic storage:

• Hard drives

Optical storage

Advantages of optical storage:

• Cheap

• Light in weight

• Very portable

Disadvantages of optical storage:

• Has slow access times

• Can easily be damaged by scratch

Examples of optical storage devices:

• CD-R

• DVD-R (Same as CD but can hold more data and is an

excellent choice to store videos, movies and similar)

• Blue-ray (Same as DVD but can hold more data)

Solid state storage

Advantages of solid state storage:

• Very resilient

• Has fast access times

Disadvantages of solid state storage:

• Expensive

• Has a limited lifespan

Examples of solid state storage:

• USB stick

• SD cards

Spec reference:

(c) RAM and ROM.

RAM is a type of memory that is volatile. It stores the operating

system, programs and data that are all currently being used. It

allows the program to read and write to its contents.

ROM however is non-volatile. It only stores the program which

is needed to boot up the computer when it starts. It allows the

computer to read into its contents only

Spec reference:

(d) Virtual storage.

Virtual storage is also known as cloud storage.

Advantages:

• Can be accessed from anywhere there is a internet

connection

• The amount of space that can be added to it it’s unlimited

• It can be easily shared

Disadvantages:

• It’s expensive if more memory space is needed

• Cannot access it from a place where there is no internet

connection

Typical example of virtual storage would be One Drive

And that’s it! Well done you have come to the end of the first section

of A level Computing which is the characteristics of contemporary

processors, input, output and storage devices. Now take a break

before you begin to start learning the next section as it will be WAY

longer than what you have just learnt.

Software and Development

Spec reference:

(a) The need for, function and purpose of operating systems.

There are many reasons why operating systems are needed,

here are a few examples of why:

• To manage the memory from processes such as

segmentation and pagination

• To provide security in order to restrict unauthorised access

to user files and computer resources

• Provides networking through protocols between different

computers

• Provides a platform for software and utility programs to

run (By utility programs I mean programs which allow you

to do useful things like word etc..)

• Provides a user interface to allow the user to communicate

with applications, through menu bars etc...for example

Command line and GUI are some of the most typical examples for

user interfaces

• Managing the CPU so it knows what instructions to

execute next and handling interrupts

• Manages peripherals, this is done by device drivers

translating instructions from the OS to what is understood

by specific peripherals

Spec reference:

(b) Memory Management (paging, segmentation and virtual memory).

Paging – This is when memory is split into equal sizes and

contains different sections from all over the memory (Basically

different contents from the memory, no matter where they

came from, where they belong etc..). It stores them as physical

divisions

Segmentation – This is when memory is split into unequal sizes

and contains whole sections of the program. It stores them as

logical divisions

Virtual memory – This is when unused data in the forms of

pages or segments are moved from memory to the virtual

memory in the hard disk which is part of the secondary storage

for long term retention. (Meaning it will be taken back from the

hard disk to be used again in memory) in order to free up space

in the memory for other programs to use.

What problems may there be with virtual memory? Too much

time may be spent moving the pages/segments between the

hard disk and memory than actually executing them.

Is there a name for this problem? You bet! It’s called disk

thrashing

Spec reference:

(c) Interrupts, the role of interrupts and Interrupt Service Routines (ISR), role within

the Fetch-Decode-Execute Cycle.

What are interrupts and what they do? They are signals which

force the CPU to stop executing the current instruction and

process them instead if they have a higher priority

How are interrupts generated? They are generated from a faulty

hardware or software and are sent to the Interrupt Service

Routine (Which produces the interrupt)

How do interrupts work? Well if the interrupts have a higher

priority than what is currently being executed, the address of

the next instruction which is currently being executed is

replaced in the PC (If you are confused with this part go back to

the very first spec reference and learn about how the contents

of the CPU change in that cycle, then it will make much more

sense) with the address of the instruction stored in the

interrupt. So the address of the previous instruction which was

being processed is put into a stack and the interrupt is

processed. Once it has finished processing it, the CPU goes

back to the stack to finish processing the instruction before it

was interrupted

There are different types of interrupts, you need to know three

of them:

• Hardware interrupts – There are the interrupts like a power

button being pressed or the memory being corrupted

• Software interrupts – These are the interrupts like illegal

instructions being encountered (Trojan horse attack and all

that), arithmetic overflow and new log-on request

• Input/output interrupts – The buffer being nearly empty or

the completion of data transfer to a peripheral (Printer

etc..)

Spec reference:

(d) Scheduling: round robin, first come first served, multi-level feedback queues,

shortest job first and shortest remaining time.

The purpose of scheduling is as follows:

• To give fair processing times to all jobs

• To make the most efficient use of the CPU

• To process as many jobs as possible in the least amount of

time possible

• To handle data input with a guaranteed time so

applications don’t fail to run

There are different scheduling methods, you only need to know

the ones below:

Round Robin – This is where all jobs are given a set of CPU time

to be processed, if the job is not processed by then it will be

put at the back of the queue

First come First serve – It's in the name, jobs are processed in

the order in which they are received

Multi-level feedback queues – This is where jobs are split into

different queues with each queue having a higher priority than

others, the CPU may move jobs between different queues if

their priorities change

Shortest job first – The job that takes the least amount of time

to be processed is processed first

Shortest remaining time – Same as shortest job first except in

the exam you will have to word it a bit differently, this is when

the job that has the shortest amount of processing time

remaining is processed first

Spec reference:

(e) Distributed, embedded, multi-tasking, multi-user and Real Time operating

systems.

There are many types of operating systems, here are the ones

you will need to know:

• Distributed – This is when data is shared between different

computers in order to complete a single task. The

operating system coordinates and controls all the

computers involved to make it look like as if they were a

single system

• Embedded – This is when an operating system is

embedded into a hardware like a TV or calculator. They

have CPU’s which consume less power and they run with

more efficiency. However, they have less memory

• Mutli-user – Like the name suggests, this is a operating

system which allows more than one user to use the

computer at the same time

• Multi-tasking – Again like the name suggests, this is a

operating system which processes multiple tasks at

simultaneously

• Real-time – This is a operating system which handles data

input with a guaranteed time and takes action

immediately. They are used around critical conditions like

airplanes and hospitals

Spec reference:

(f) BIOS.

No no, this has nothing to do with Biology

So BIOS is a system which checks that peripherals are

connected to the computer and working. This step is also

known as POST (No nothing to do with Postman Pat)

So the BIOS does that before handing full control of the

peripherals to the device drivers so the operating system can

communicate with them, and this brings on to the next spec

reference....

Spec reference:

(g) Device drivers.

Device drivers are basically devices which allow the peripherals

to communicate with the operating system. Different

peripherals have different device drivers

Spec reference:

(h) Virtual machines, any instance where software is used to take on the function of a

machine, including executing intermediate code or running an operating system

within another.

Virtual machine is software which runs on a hardware and

allows programs to be emulated in them

Advantages of virtual machines:

• Allows multiple operating systems to run on the same

computer

• Allows older applications not compatible with newer OS to

be run on the same computer

• Allows shielding from malware since the malware will only

affect the virtual machine and not the actual computer

Disadvantages of virtual machines:

• Programs will not run as smoothly in a virtual machine as

they would on the computer

• You still need a license to operate the applications and the

operating system in the virtual machine

Spec reference:

(a) The nature of applications, justifying suitable applications for a specific purpose.

There are many applications out there which allow people to do

lots of useful shit, you need to know about these ones

specifically and be able to apply them in certain scenarios:

• Word processors – Allows the making and printing of

documents

• DTP – Allows the making of promotional materials

(Leaflets, business cards etc...)

• Database managers – Helps to manage and store large

amounts of related data

• Spreadsheets – These help to do calculations and make

financial modellings (Storing bank account details, how

much they paid etc...)

• Presentation and slide software – These display slides and

the next slide to be shown can be determined by previous

user input

• Animation – Helps to make moving images, used for a

wide range of stuff like showing how weather patterns

move in a Geography class

• Social networking – Helps people to communicate and

share ideas with others much more easily

• Image and graphics manipulation – Improves the quality

of images or graphical material

• Media and video editing – Helps to edit or create new

videos like movies, ads etc...

• Gaming – Allows people to play games for leisure

purposes (Which some of you have been doing for too

long hence you are failing A levels)

• Email clients – Allows you to send emails

• Web browser – Allows you to access the World Wide Web

Spec reference:

(b) Utilities.

Utilities are software which help to maintain the computer and

keep it running.

Here are some examples you need to know:

Anti-virus – This removes malicious programs from the

computer

Disk fragmentation - (Before I dive in let me say what disk

fragmentation is, basically is files scattered all over the memory)

This allows all files to be compiled together so more space is

available for more files to be stored

Compression – This reduces the size of files so they take up less

space when they are stored

Firewalls – This protects computers or a network of computers

from unauthorised access. It is used to protect against hackers

but to also stop employees visiting inappropriate websites like

PornHub during work hours

File managers – They allow the editing, deletion or creation of

files. So they basically allow the management of files hence the

name

Backing up – Automatically makes copies of files so there is a

copy to return to in case the original file is lost or corrupted

Spec reference:

(c) Open source vs closed source.

Open source software is software which is available to the

public while closed source is software.....come on still not

getting it? Ah! It is software not available to the public. Closed

source software is also known as proprietary software

Here are the differences between them:

Open source Closed source

It is supplied with the source

code

Has a highly polished user

interface

It’s free It is copyrighted

Encourages mass user

development

Has high development costs

Promotes creativity and

sharing

Much more safer from being

hacked into (Since hackers

can’t tamper with the code

and find out its weaknesses)

Spec reference:

(d) Translators: Interpreters, compilers and assemblers

A translator is a software which translates source code into

object code (Code which is understood by the computer)

Here are the different types of translators you need to know

about:

Interpreters: These translate high-level source code into

machine code. They translate one line of the source code at a

time into multiple lines of machine code. If there is an error in

the code, they stop and point the position of the error.

Few lines of high-level source code being translated to multiple lines

of machine code

Is there a problem with interpreters? Well yes, each time the

lines of high-level source code are translated, the interpreter

has to look at the WHOLE source code which makes the

process really slow

Compilers: These translate high-level source code into machine

code. However, unlike the interpreters, they translate the whole

source code into object code (This is different from machine

code) from start to finish. The object code can then later be run

as machine code

Assemblers: These translate low-level language into machine

code. It translates one line of the source code at a time into a

single line of machine code. However, assembly language is

processor specific so it’s not portable between different

computers

Spec reference:

(e) Stages of compilation (lexical analysis, syntax analysis, code generation and

optimisation).

The code has to be compiled in order to run as fast and as

smoothly as possible in the computer, there are 4 stages all of

them in order. Learn them

Lexical analysis – This is when all the white space is removed

and the remaining code is turned into tokens (Basically

components like plus signs, strings, letters etc..). A symbol tree

is then created

Syntax analysis – The syntax of the code is checked against the

rules of the language and if any of them breaks the rules, an

error is generated. An abstract syntax tree is also created in this

stage

Code generation – The abstract syntax tree created before is

turned into object code

Code optimisation - (Just to let you know, optimisation means

making the most efficient use of a resource) The code is

optimised to run as fast as possible and any redundant code is

removed

Spec reference:

(f) Linkers and loaders and use of libraries.

By libraries what we mean is a library of code, still stuck? Well

what I am trying to say is...ehm...how do I explain this? Basically,

they are bits of codes from different sources, for example

remember how in your GCSE Computing or A level Computing

courseworks you need to copy bits of codes from different sites

in order to make a working solution? Yeah that is basically a

library of code, all those bits of code stored together make a

library of code

What do linkers do? They include links to any library code that

is needed and put all of them into a single executable file.

Is there a problem with this? Yes, it makes the final code that is

being compiled really large in size.

Is there a solution for this? Of course, there is! Use something

called dynamic linking, this is where all the library code is stored

on the computer and the operating system links them directly

to the final compiled code when it is being run. This reduces

the size of the final compiled code

What does the loader do? It’s in the name, the loader loads the

compiled code in memory ready for use

Spec reference:

(a) Understand the waterfall lifecycle, agile methodologies, extreme programming,

the spiral model and rapid application development.

In this section you will learn about the different ways

programmers develop programs for their clients. Here are some

of the ways:

• Waterfall lifecycle – The program is developed into stages

which are put in order, you might have to go back to the

previous stages in order get new requirements and

improvements

• Agile methodologies - Requirements of the program will

increase as it’s being developed. Iterations of the program

are made with each iteration having increased

requirements

• Extreme programming – This is when a user is involved in

the development of the code. Iterations of the programs

are made and the user can give instant feedback so the

program is built into successive iterations with new

requirements

• Spiral model – The requirements of the program are set,

then the risks are identified and solved. This keeps on

going round and round the cycle until the program is

accepted

• RAD – This is when a program is developed with a reduced

functionality, it is then tested by the user who gives

feedback. The feedback is used to improve the code and

this keeps on going round and round the cycle until it is

accepted

Spec reference:

(b) The relative merits and drawbacks of different methodologies and when they

might be used.

Advantages of the waterfall cycle:

• An easy model to manage

• Has clear deliverables

Disadvantages of waterfall cycle:

• Lack flexibility

• Has a high risk factor

• There is no collaboration with the user

• Not suitable for programs with unsure requirements

Advantages of RAD:

• User is involved in the making of the program

• The final version of the program is more likely to fit the

user’s needs

Disadvantages of RAD:

• Heavy collaboration with the user is required

• Unsuitable for large projects

• Not suitable if efficiency of code is a priority

Advantages of the spiral model:

• Risks are identified and solved

• Works well with large projects

Disadvantages of the spiral model:

• Risk management skills are costly

Advantages of extreme and agile programming:

• There will be fewer bugs in the code

• The quality of the final program will be higher

Disadvantages of extreme and agile programming:

• Heavy collaboration with the user is required

• It’s expensive

Spec reference:

(c) Writing and following algorithms.

This is basically writing and following flowcharts and

pseudocode, later in the sections probably when you learn

about all the concepts of paper 2 you will learn more about

pseduocode and flowcharts and how to follow them. You

should already have an understanding of flowcharts and how to

follow them from your studies during key stage 3 and 4 of

Computer Science

Spec reference:

(a) Need for and characteristics of a variety of programming paradigms

Let’s make one thing clear about what do we mean by

programming paradigms, programming paradigms is, in simple

words different kinds of programming languages.

There are many different types of programming languages,

three of them are:

• Procedural

• Object Orientated

• Assembly/low level language

Examples of Procedural will be Pascal, Python or C++

Examples of Object Orientated will be Java or Processing

Examples of assembly/low level language (Well there is only

one example of assembly language lol) is LMC or Little Man

Computer as some may call it

Why do we need different programming paradigms? Well

simply because some problems are much better suited at being

solved in a different programming paradigm than the others

Spec reference:

(b) Procedural languages.

This section will be focusing on a little description of procedural

languages. So here it is -

Procedural languages are a series of instructions which tell how

things need to be done step by step in a sequence. It has a

selection to make choices and iteration about how many times

certain instructions need to be done. The instructions are coded

in functions or procedures

Procedural languages are also known as imperative languages

because they give you orders and how they should be done.

Spec reference:

(c) Assembly language (including following and writing simple programs with the

Little Man Computer instruction set). See appendix 5d

Assembly language is low level language and is processor

specific meaning it will not run on all computers

There are some commands you need to learn, here are the ones

you will need for the exams:

• ADD – This add data

• SUB – This subtracts data

• LDA – This loads data

• HLT – This ends the program

• OUT – This outputs data or the result

• DAT – This declares like a variable where input data which

brings us to the next command

• INP – Used to take in data

• BRA – This is branch always, basically what it means is that

branch a specific part of the code no matter what the

result is

• BRP – Branch if positive, what this means is that if the

result is a positive integer branch a specific part of the

code

• BRZ – This is branch if zero, what this means is that if the

result is 0 then branch a specific part of the code

I realize that a lot of students will find the BRA, BRP and BRZ

commands difficult to understand so let me explain how they

work:

So here is our LMC interface, as you can see the BRZ and BRP

commands have words written next to them, these words

indicate which part of the code to branch again.

So for example BRA has the word LOOP next to it, this means

that no matter what the result of the code so far is, which is

displayed in the accumulator, the part of the code which has

the word LOOP written next to it will be branched (executed)

again and again until it reaches a 0 where the BRZ function will

end the code:

The same logic applies to BRP except if the result of the code so

far is a positive number (Which always will be probably) then

you branch the code from a certain point indicated by the word

next to it.

So you could argue that the BRP command is the same as the

BRA command but then again it’s A level Computer Science

where some things are just ?@&%ed up, and therefore you

have to keep this difference in mind. They might for example

ask you to state the difference between them in the exam so it’s

good to know the differences between them, even tho they

appear to have the same function.

Some of you may be confused with the DAT command, like it

has been said before, it is used to declare a variable. The picture

below will show you in more detail:

So in this picture, the STA command is saying “Store the user input in

the variable Num1” and it does just that, the value of the user input

is now stored in the variable Num1.

Another picture just to understand the DAT command better

Spec reference:

(d) Modes of addressing memory (immediate, direct, indirect and indexed).

Now we are going to learn about addressing modes, basically the

whole purpose of this is to fetch the right data for execution.

There are ways of addressing the memory (Which means providing

addresses of the memory location of where the data is) in order to

do this. You need to learn about the following ways:

Immediate addressing – This is when the address part of the

instruction is the actual data to be used.

Example:

Instruction:

ADD 10

The address part of the instruction is 10 but actually 10 is not a

memory location but the actual data to be used.

Direct addressing – This is where the address part of the instruction

contains the memory location of where the data should be fetched

from

Example:

Instruction:

ADD 7

The address part of the instruction is 7, this means our data is

located at memory location 7. GET THERE NOW

Indirect addressing – This is where the address part of the instruction

contains the memory location which will contain the real memory

location of where the data should be fetched from

Example:

Instruction:

ADD 7

The address part of the instruction is 7, this means location 7 will

contain another memory location, say for example 30. So our data

really is located at memory location 30

Indexed addressing – This is where the address part of the

instruction is added to a value in the index register (Which is a

constant value) to obtain the memory location of where the data

should be fetched from. It is used in order to carry out the same

command a number of times

Example:

Instruction:

ADD 7 ADD 5

Index Register

7

The address part of the first instruction is 7 so 7 is added to index

register value 7. This gives a number of 14 so the data needed is

found in memory location 14. Then the address part of the second

instruction, 5 is added to 7, so them added together gives a value of

12. Therefore our second data to be used is found in memory

location 12 and so on

Spec reference:

(e) Object-oriented languages (see appendix 5d for pseudocode style) with an

understanding of classes, objects, methods, attributes, inheritance, encapsulation and

polymorphism.

Objects, classes, methods, attributes and inheritance

An object is..well a thing like a tree etc..but you don’t need to know

anything about its definition. Just know what it is so you know the

next things I am going to talk about.

Here is your object:

Here is the object, the class is what it defines it, the attributes

are the features of the object and the methods are the methods

of accessing the attributes in order to change the attributes in

this case you can change things like name, address etc...

There is a definition you need to know (At least in my opinion),

it’s called instantiation. Instantiation is the process of creating

an object from a class template, like this:

So here you can create new objects like the person’s friends. They

will inherit all of the original class’s (Which is called the super class)

attributes and methods of accessing the attributes. The only things

these new objects (which are referred to as sub-classes) won’t

inherit from the original class is the class’s name, obviously.

Now if you wish to change the names of one of your friends in the

sub class and a method for doing that is already available in the

super class (In this case it is, setName()) then you just follow this

format:

Subclass name.super.method of accessing the attribute

So in this example, if I want to change the name of personOne, I do

the following:

PersonOne.super.setName(And here you set whatever name you

like)

PersonOne is the name of the sub class, super is the keyword that

needs to be used in order to access the method and setName() is the

appropriate method of changing the name. The dots are obviously

needed to separate out the words.

Still confused? Read over the whole concept again, trust me you will

get it, is not hard to understand.

Encapsulation

Now let’s learn about something called encapsulation. What is

encapsulation?

Encapsulation is a way of protecting the attributes and the methods

of accessing attributes of an object so that they can’t be altered by

other objects. These things can only be accessed through certain

methods.

Why is this used? So that the programmer is in control of their code

and the code can only be used in the way they want it to be used

Here is encapsulation in action:

Here you have to use the method .setName() in order to declare a

name within a new object and the name has to be at least 3 letters

and maximum of 20 letters

Polymorphism

And now let’s move on to something called polymorphism.

Polymorphism is when a token of a code has more than one function.

For example, a + sign may add numbers or join two words together

to make a phrase. So, the + sing acts both as a arithmetic operator

and a concatenation operator. Or the = sign, it can either be used to

assign a value to a variable, change the value of a variable or

compare values. So, it acts as an initiating operator, an assignment

operator and a comparison operator.

If you are confused remember, we are not talking about Python or

any high-level language here. Just pseudocode

Let’s look at a complex polymorphism example:

So here is some code, it is showing people, employees and who

is a salaried or hourly one. The method .outputName should

only output the names of these people when the code is run,

right? Well think again, here are the results when this code is

run:

Sure the names have been outputted, but it has also outputted

who is a hourly employee and who is a salary one. So what the

method .outputName here did was output all the names as well

as outputting who is a salaried employee and who is a hourly

one but these are not names obviously. This is polymorphism in

action

Pseudocode for object-oriented languages

You will also need to learn some pseudocode for object-

oriented languages so you can familiarise yourself with them in

the exam

Methods and attributes pseudocode

Inheritance and constructors pseudocode

The constructors pseudocode is show by the word new, this is just

showing that a new method of accessing the new attributes are

being created. In this case there is an additional attribute: breed, so

there is a need for a new method of accessing the attribute breed.

And finally the pseudocode or format to create a new object from

instantiation is the below:

And by the way, one final thing: the attributes and methods of

accessing the attributes can always be assumed to be public unless

stated otherwise.

Now you may be thinking, what the %@&/ is private and public? It’s

simple, anything public can be accessed by other objects while

anything private cannot and can only be accessed within that

object/class. So, in these above examples, it makes sense that the

attributes of objects (The names of the dog and their breed) are kept

private so that they can’t be altered by other objects but the

methods of accessing them should be public so that other objects

can obtain their values.

Yay! Well done! You have come to the end of the second section of

OCR A level Computer Science!

Exchanging Data

Spec reference:

(a) Lossy vs Lossless compression.

There are two ways to compress a file, in other words there are

two ways to reduce the size of a file:

Lossy compression: This is where actual data is removed from

the file, an algorithm is used to remove the least important data

from the file so it has its size reduced. An original file

compressed in this way cannot be recreated

Lossless compression: Actual data is removed from the file but

the removed data is encoded in a way so that the file can be

recreated. An original file compressed in this way can be

recreated

Spec reference:

(b) Run length encoding and dictionary coding for lossless compression.

Remember how we said that in lossless compression removed

data is encoded in a way so that the original fine can be

recreated? Well here you are going to learn exactly what those

ways are and there are probably many ways out there but since

the exam board has some.......mercy on you they decided to

make life a little bit less hard for you, oui? (Dunno why I said

yes in French but whatever)

Run length coding: This is where redundant data is stored once

along with an index of how many times the redundant data has

been repeated

Dictionary coding? This is where the data items in the file are

stored with indexes and a sequence of occurrences so the

original file can be recreated

Spec reference:

(c) Symmetric and asymmetric encryption.

This section focuses on how to send messages safely through the

internet so that you can send pics to your partner through Grindr in a

way that none else can see your pics.

Symmetric encryption – This is where a message is encrypted

and decrypted using the same key.

These are the problems with this method:

• Production of the key can be copied in order to obtain a

copy of the key so the message can be intercepted and

read by hackers

But one benefit of this encryption method is:

• The key can be used as many times as you like

Asymmetric encryption – Different keys are used to encrypt and

decrypt the message; the sender shares its public key with the

recipient and then the sender encrypts the message with their

public and private key, and the recipient decrypts the message

using the sender’s public key and their own private key.

Benefits:

• Unauthorised people can’t read the message

• Message will be authentic

• Unauthorised people can’t modify the message

Spec reference:

(d) Different uses of hashing.

Hashing is when data is turned into a numerical value (Like

passwords being turned into dots)

Here are two uses of hashing:

• Generating disk addresses to store data on a random

access device

• Checking and storing passwords

Spec reference:

(a) Relational database, flat file, primary key, foreign key, secondary key, entity

relationship modelling, normalisation and indexing. See appendix 5f.

Ah databases, you probably come across them and for A levels

you don’t need to know the exact definition of a database

unlike GCSE, as long as you just know what a database is you

should be fine with this section

A relational database contains multiple tables which are all

linked together.

Some benefits/features of relational databases:

• Improves data integrity

• Has reduced data redundancy

• Adds user security

• Querying (Like modifying) is easier in a relational database

In comparison, a flat file database is a single table which

contains all records and fields.

Some features(Drawbacks in my opinion) of a flat file database:

• Has data redundancy

• Simple to use

• Querying is harder

Primary and foreign keys

You should know what a primary key is from GCSEs, if you don’t

then behold the definition of a primary key: a unique identifier!

A foreign key is a primary key which acts as an attribute in

another table, creating a relationship between two or more

tables.

Secondary key and indexing

A secondary key is an index which can be used to search a

database quicker by humans.

So for example if a table has the records for a photoshoot and

the records are Name of photographer, Place, Date, Customer

name what will be the appropriate secondary key to search for

your photo?

Customer name of course, because 1. It’s easier for the

customers themselves and 2. It’s unlikely two customers will

have the same name.

And indexing is well as already been said, the searching of a

database.

Entity diagrams

Now here are some entity relationship diagrams, learn them:

As for normalisation, it will be covered in the spec reference:

Normalisation to 3NF

Spec reference:

(b) Methods of capturing, selecting, managing and exchanging data

There are three ways of capturing data, these are:

• Text boxes, these can tell the user what data input is

needed and forces the user to give a data input

• OCR (Not the exam board obviously), this scans the

characters in a document and compares them to a library

of character images to find the best match. An example of

where OCR might be used is reading documents to blind

people or track number plates on cars

• OMR, this scans the position of a mark in a document. It

uses this as the data input. An example of where this

might be used is marking multi-choice exam questions

Selecting data

There is not much to say for this, there are two ways of

selecting data:

• SQL (It’s a language)

• Drop down boxes

Managing data

This is done by the database management (DBMS), you need to

know how the database management manages the data:

• Provides a manipulation language to access and change

the data

• Provides an interface for other programs to access and use

the data

• Provides additional security

• Enforces validation rules

• Maintains integrity to make sure the efficiency and

structure of the database is not disrupted

Exchanging data

Data can be exchanged in many forms like XML, JASON or CSV

A feature called EDI can exchange data between databases.

How does EDI work? It connects two interfaces of databases

together so they can read and write to each other's tables, this

can be done by importing or exporting routines or by live

connection

Spec reference:

(c) Normalisation to 3NF.

This will be a pretty challenging topic to explain, the concepts

themselves are simple to understand but teaching it the first time

round is difficult. Just hang on....

Normalisation to 3NF basically means turning a flat file

database into a relational database. In this section you will learn

how that is done

Before diving in you need to understand what a composite key

is, a composite key is when more than one attribute of a

database is used as a primary key so the picture below will

make it a lot more clearer:

(In case you are confused with what an attribute is, it’s basically

the heading of a column) So in this table there is no attribute I

can use as my primary key as none of them have unique values,

therefore I will use BOTH course number and date of birth as

my primary key and this is called a composite key, a primary

key made out of more than one attribute as there can be a

limitless number of attributes in a primary key. (A composite

key may well contain 100 attributes but then again, what kind

of database is that?)

So here are the steps for normalisation to 3NF:

First you need to turn your database into 1NF format, to do

that you:

• Remove any duplicate attributes

• Remove any groups of repeating data

• Identify the primary key

• Separate out any attributes which are not atomic into

separate attributes

You may be confused with the last point, allow me to explain:

Here is your flat file database, in the attribute ‘lecturer’ you will

notice that not only does it have the names of the lecturers but

also their codes like CSA, AOH etc...these need to be separated

into separate attributes as they are separate things

Second you need to convert your database into 2NF format, to

do that you:

• Check that the database is already in 1NF format

• Remove any partial dependencies

• Fix any Many to Many relationships

A partial dependency is when an attribute depends on just

some parts of a composite key as their primary key, it does not

use all parts of the composite key as their primary key, here is

an example which will explain it better:

Let’s go back to this database, so my composite key is date of

birth and course number however three attributes which are

course number, lecturer initials and lecturer name are partial

dependencies, how do I know this?

Well you have to use logic and common sense here, I am not

going to know anything with just date of birth but with course

number I know the course name, the lecturers and their initials

by just using the course number. So, in order to know these

three things there is no need to use date of birth as well

therefore these attributes are partial dependencies.

So that means you remove those three attributes, yup you are

removing almost half of the table

And the final thing you need to do is convert the database into

3NF format, to do that you:

• Check to see if the database is already in 2NF form

• Remove any non-key dependencies (This means remove

any attributes which are determined by an attribute not

part of a composite key

Final 3NF version of the database

Issues with many to many relationships

You cannot have many to many relationships because they are

not normalised. They cause data redundancy

Yes, there is a way to do many to many relationships but still,

you should not use them OR approve them

Spec reference:

(d) SQL – Interpret and modify. See appendix 5d.

You need to know the following commands of SQL for your

exams:

Here is an example of how to delete data from forms using

SQL:

And how to add values into a form:

And search values:

The wildcard * means “all fields” and HAS to be used when

searching or matching all fields of a particular record unless

otherwise

And by the way you do know each time in these examples they

say INSERT, DELETE or whatever into Form the table in SQL is

called a Form? It is not referring to the form as in the form

classes, oh no no no....

Spec reference:

(e) Referential integrity.

Referential integrity means deleting or modifying records in

multiple tables that have the same primary key, if for example

you delete one record, all records from all tables with the same

primary key should also be deleted.

A cascade delete or modifying restrain is applied to a primary

key of a record so that all records from all tables with the same

primary key can be deleted or modified.

Why is it used? It’s simply much quicker to alter or delete

multiple records in this way

Where it might be used? It can be used to delete the records of

a student who left the school, the records of that student will

be stored in multiple tables in the school’s database so they all

have to be deleted and doing this one by one will take so, SO

long

Spec reference:

(f) Transaction processing, ACID (Atomicity, Consistency, Isolation, Durability), record

locking and redundancy.

No we are not talking about hydrochloric acid, just stay out of London

Transaction processing is when the processing of an instruction

is split into individual operations. Each operation must succeed

or fail as a whole unit

Transaction processing must follow the rules of CRUD

Create

Read

Update

Delete

In order to endure data integrity in a database, whenever a

change in a database is made they have to follow the ACID rule

which stand for Atomicity, Consistency, Isolation and Durability.

Let’s run through each of them:

Atomicity – A change in the database must be processed

completely or not at all. A half-change must not be saved back

into the database

Consistency – A change in the database must retain the overall

state of the database

Isolation – A change in the database must be processed in

isolation so that other processes or users do not have access to

the concerned data used in the process

Durability – A change in the database must not be lost due to a

system failure

Well not that big of a system failure, and what is this guy doing with

a...stick in the middle of a huge blazing fire?

Spec reference:

(a) Characteristics of networks and the importance of protocols and standards.

Networks are computers connected together

Let’s have a look at some of the benefits and drawbacks of

networks

Benefits:

• Allows sharing of resources like printers

• Allows the sharing of data stored on hard disks

• It’s much easier to back up data from a central server than

on individual machines

• Allows different computers to be connected together

Drawbacks:

• It’s hard to make a network safe from outside threats

• The user may become too dependent on the network

• If there is a lot of data traffic in the network, the

performance can degrade

• If the network goes down, various resources cannot be

accessed

Protocols are a set of rules governing communication in a

network. An example of some of the rules might be that the

devices involved in the communication must all have the same

bit rate, use the same transport medium, use the same

character set or make sure their computers are compatible with

different software.

These are the different protocols:

• TCP (Transmission control protocol), it is used with the IP

and makes sure that packet transmission is error free

• IP (Internet Protocol), this is involved when data packets

are sent across the internet between different routers

(Routers are devices which receive data, you will learn

more about it later on)

• FTP (File transfer protocol), used by servers to download

files from the internet

• HTTP (Hypertext Transfer Protocol), used by web servers to

transfer webpages

• SMTP (Simple Mail Transfer Protocol), used by servers

when transferring emails across the internet

Spec reference:

(b) The internet structure:

• The TCP/IP Stack.

• DNS

• Protocol layering.

• LANs and WANs.

• Packet and circuit switching.

The TCP/IP stack

There are four stacks you need to know about:

• Application, this is where data is shown to the user on an

application (Like Fortnite)

• Transport, keeps track of segments within a network,

checking if packet transmission and switching was

successful

• Internet, carries the data packets

• Host to Host, this just checks on network devices and

transmission medium

DNS

DNS are names given on resources of a network, most notably

in the internet:

It is structured into a hierarchy, with the top domain on the top

(obviously) followed by the sub-domains and the name of the

resource

Why is this used? To replace the IP address of the device with a

more, user friendly name.

Protocol layering

This is pretty similar to the TCP/IP stack address: the layering of

the protocol are: Physical, Data Link, Network, Transport,

Session, Presentation and Application with Physical at the

bottom.

Physical – This is just network devices and transmission medium

Data link – This takes care of control access, error checking and

correction

Network – This transmits the packets

Transport – This checks on the segments of the network,

ensuring that packet transmission has been successful

Session – This is where a session is created, managed and

ended. It also decides on the type of transmission like half-

duplex, full-duplex or simplex

Presentation - This controls the interaction between the data

sent and the need of data from the operating system, so

packets are decrypted or encrypted

Application – This is where data is moved from the presentation

layer to the application where it is shown to the user

LANs and WANs

Local area network – This is where computers are all connected

together in a small geographical area, like a building site or an

office

Wide area network – This is where computers are all connected

together in a wider geographical area, like the world or

between different counties

Local area network is much safer than wide area network

Packet and circuit switching

There are two ways of sending packets: packet switching or

circuit switching:

In circuit switching there is only one route and all packets are

carried through this same route so the route is already

established.

In packet switching however the packets take different routes,

each packet has a header of information, the address of the

node (The computer who is going to receive the packets) is

read out and the best route for each packet is found so all the

packets travel through different routes. This means some

packets will take longer to arrive at their destination than others

Packet switching is more efficient and if any packets are

missing, the receiving device can simply request the missing

packets from the sending device

Spec reference:

(c) Network security and threats, use of firewalls, proxies and encryption.

There are three ways to protect your network from threats as

already shown from the spec point reference above:

Firewalls – These protect the network from unauthorised access

and check files for viruses

Proxies – They act as a hub where they process user requests,

this avoids direct contact with the user’s computer and the

internet

Encryption – This encrypts messages so unauthorised people

can’t read them

Spec reference:

(d) Network hardware.

Network Interface Card – This sends electronic signals across

the network

Router – This transmits data between different networks

Switches – They connect devices together on a network

Hubs – Same as switches (No no like literally, I am not joking)

Wireless Access Point – Connects a network to a WIFI network

Spec reference:

(e) Client-server and peer to peer.

This section focuses on how networks may be structured, if you

did Computing GCSE then you may be familiar with some but

this is just a little bit more detailed, read on...

In client-server all the computers are connected together

through a single server. The benefit is that if one computer

goes down then the network will be unaffected. However, a

drawback will be that if the server goes down, then the whole

network goes down.

In peer to peer all the computers act both as the client and as

the server to each other. The benefits are that it’s cheap and the

files can be easily shared. However, this network allows for mass

piracy of content

Spec reference:

(a) HTML, CSS and JavaScript. See appendix 5d.

Here you need to learn tags about HTML, CSS and JavaScript,

let’s start with HTML:

<html> This defines that the page will be written in HTML

<link> This is used to link a CSS file, like this:

The CSS file linked in here affects both the header (Show

between the <h1></h1> tags) and the paragraph (Shown by

the <p></p> tags) but you don’t need to worry too much

about it

<head> This just defines a header

<title> This defines a title

The title will only appear on the tab the HTML code creates and

not in the actual webpage, keep that in kind

<body> This defines the body of a HTML page, where the main

content (Paragraphs, heading, lists etc..) will be put

<h1> <h2> <h3> These have exactly the same functions as the

<header> tags except they just decide in what order should the

headers be displayed and how big should they be, with <h1>

displaying a header first and the largest header:

 These insert an image

<a> Defines a hyperlink

<div> Defines a section of the HTML page, often used with a

style attribute:

<form> Defines a section of the HTML of where user can input

data

<input> Used with the <form> function to create a button or

textbox, along with their names; see picture above

<p> Defines a paragraph

 Defines item in a list

 Defines an unordered list

 Defines an ordered list

<script> Defines a section of JavaScript

CSS

CSS is slightly easier to understand and there is not much to

understand, CSS is used to style webpages, HTML is used to

create them but now with CSS we are styling them.

I will just paste a picture here and hopefully you should

understand what is going on and how to use CSS in JavaScript:

When you are adding CSS always make sure you add them

between the tags <style></style> as these are used to define

CSS

Also you need to be familiar with these commands:

The commands are exactly what they say they are

Javascript

All you need to know for Javascript are these commands:

Let’s go through each of them:

And the other way of changing HTML content with Javascript:

Writing into a HTML document using Javascript:

And finally creating a HTML alter box using Javascript:

Spec reference:

(b) Search engine indexing

Search engine indexing is when a search engine like Google

runs a user’s request (To look up porn or something) against its

own index of webpages. It’s faster to run the user’s request in

this way but the index has to be constantly updated.

How is the index created? Programs called “crawlers” travel

around the World Wide Web, indexing letters they find and

mapping out (planning the details of something) links between

webpages from internal and external links.

Spec reference:

(c) PageRank algorithm

This section will focus on how exactly search engines like

Google display your search results like your favourite types of

porn on your screen in like a few seconds. This is the job of the

PageRank algorithm

So how does the PageRank algorithm work? Here are the steps:

1. The algorithm assigns a rank to a page based on the user’s

search terms

2. The algorithm ignores the spelling mistakes

3. The algorithm attempts to deal with millions of results

usefully (Like it has to sort out all the million and millions

of different results that come up after a search)

4. The algorithm receives inward links and makes use of

them

5. The algorithm assigns each inward link a rank

6. The algorithm regularly recalculates the ranks of the pages

Spec reference:

(d) Server and client side processing.

Here we will focus on how your search results are processed,

there are two ways to do this as mentioned in the spec

reference:

Client-side processing:

This is done by the Javascript. The server has a reduced web

traffic flow so it has less processing to do which means there

are fewer delays in response time from the server. The data can

then be validated by the client (you)

Server- side processing:

Sensitive data will never be processed on the client side so the

querying of databases in done on the server. The databases are

then stored on the server. The server may slow down if it’s

carrying out lots of processing

Well done once again! You have come to the end of the third section

of A level Computer Science, only two more to go and you will be

finally free! Oh and after that you have to learn stuff for your second

paper……

Data types, structures and algorithms

Spec reference:

(a) Primitive data types, integer, real/floating point, character, string and Boolean.

This section is piss easy, just read on....

Integer – This is just a number like 7

Real/floating point – This is a decimal number like 8.7

Character – This is a single...character lol like 5 or $ or L or even

“ “(Space basically)

String – This is a word made out of characters like 6T74£$ or

just words like HELLO

Boolean – This is just TRUE or FALSE

Spec reference:

(b) Represent positive integers in binary

This section is just about presenting positive numbers like 97

into binary form, if you did in GCSE Computing you should

know it EASILY, and if you didn’t....then well just research about

it.

Go to Google and type in “Converting denary numbers into

binary form”

Spec reference:

(c) Use of sign and magnitude and two’s complement to represent negative numbers

in binary.

Note: In order to understand this section you MUST first

understand the previous spec point.

Here you just have to know that representing negative numbers

in binary, the binary format ALWAYS starts with a 1 whilst with a

positive number the binary format start with a 0.

If you want to convert say –93 into binary form you MUST place

a 1 in your binary table and just remove 128 and place a 1

underneath its former place, the rest can be positive so here is a

picture below:

Your normal binary table:

Now looks like this since we are trying to convert a negative

number into binary:

Simply place a 1 on the start of the binary table:

And start at 64, remember your number is negative so you have to

take away numbers using the numbers in this binary table from the

number you are trying to convert into binary:

And here is your answer: 11011101

As for positive numbers you do it the normal way (Just like in

GCSE)

However what you did right here is created a binary number via

sign and magnitude form, with two complement’s form it is a

little different.

You have a different table in two complement’s form which is

this one:

As you can see, not much has changed, the only thing which

has changed is that 128 ONLY is now negative. But the same

rule of; if the number is positive, the binary form starts with a 0

and if the number is negative, the binary form starts with a 1

still applies

So, if you want to convent –93 into binary form using this

method, you do it the same way as the sign and magnitude

form except you include the –128 in your calculations obviously,

here is a picture below with the result:

Do not be confused with this mindset of “Do I add or subtract

when it’s a – and -?” You just subtract and whatever result you

get in this case 35 (Just ignore what sign it should be) carry on

as you would in sign and magnitude form

Spec reference:

(d) Addition and subtraction of binary integers

Again, a lot of you should be familiar of how to add binary

numbers from GCSEs, if you forgot here is a little run down:

Rules for adding:

1 + 1 = 0 with a 1 carried

0 + 1 = 1

0 + 0 = 0

1 + 0 = 1

1 + 1 + 1 = 1 with a 1 carried

Now for subtracting here are the rules:

1 – 1 = Cancellation, this does not give a value and whatever

value is left behind (1 or a 0) that is the result

1 – 0 = 1

0 – 1 = Borrowing, this mean you have to borrow 2 1s from the

1 in the nearest column, you just have to borrow from ONE 1 to

get two ones.

0 – 0 = 0

Here is an example to help you understand the rules better:

Keep in mind when

borrowing from the nearest 1 that 1 becomes a 0 and the next

column (backwards) receives the two ones

Spec reference:

(e) Represent positive integers in hexadecimal.

(f) Convert positive integers between binary hexadecimal and denary

Again, you should know this from GCSE, but just in case you

forgot here is a rundown of the normal numbers to hex index:

Hex value Normal number (Denary)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

C 12

D 13

E 14

F 15

To convert a binary number into hexadecimal, you first split an

8 bit binary number into 2 and convert each of the now 4 bit

binary numbers into hex value, keep in mind the binary table

now used for each of the two binary values goes up to only 8.

To do hex decimal to binary you do this process vice-versa, if

you are still confused go research on this topic.

Spec reference:

(g) Representation and normalisation of floating point numbers in binary.

So far you have looked how to convert positive, whole numbers

(referred as denary) into binary. In this section, you will look at

how DECIMAL numbers, both positive and negative are

represented in binary.

To convert decimal numbers into binary you use this binary

table:

So, if I want to convert a NEGATIVE denary like –7.5 into binary what

I do first is work out the nearest whole number and that is –8. So I

have to get –8 in the number table:

REMEMBER: With a negative number, its binary form ALWAYS

starts with a 1.

So, I have my number –8, now what you need to do is subtract

8 from 7.5 and that gives you 0.5. So, looking at the decimal

part of the binary table, you have to get 0.5 and that is easy:

With a positive number, it’s much easier, remember a positive

number’s binary form starts with 0 so if I want to convert

positive 7.5 into binary, I simply try to get the number 7 in the

number part of the binary table, and 0.5 in the decimal part of

the binary table:

You think this is your final answer? Oh no I am sorry to say! In the

question you will often be asked to “normalise” your answer in the

table in the form of the mantissa and exponent and you will see how

to do that very soon. The reason why they ask you to normalise is

because you can’t really tell if the number is decimal or not just by

giving its binary value as it is in the table.

However, in the question they might give you a number to

convert which just won’t fit with this table, so you need to

increase the size of your number table, both with the section of

whole numbers and the decimal (fraction) ones like this:

You can kind of see where floating point gets its name from, the

number line always floats (Like changes its size) depending on

the number to convert into binary. To extend the part which

contains the fractions, you always double the denominator as

seen here with 1/2, 1/4, 1/8, 1/16, and so on. Also, in the whole

number side, the biggest number in that side becomes a

negative as seen with –8, -64 and –4. The reason being so that

you can convert both positive and negative numbers into binary.

You also need to learn what the exponent and the mantissa:

The exponent is always worked out using the orange table in the

picture, the exponent tells how far the point in the mantissa table

should move. The mantissa table stores the actual binary

number. If the exponent is negative, the point moves towards the

left, if it’s positive it moves towards the right.

So an exponent of 2 means the point will move two places to the

right:

So now we get a new binary table:

We then put our mantissa value into this number table

according to the new position of the floating point:

Now we just add all of these numbers together to get a floating

point number, in this case 5.5 (As ½ = 0.5)

Now that you understood this, let’s go back at normalisation

mentioned earlier. So how do we normalise this binary number:

First you need to know what decimal number is it for, does this

binary number represent a positive or negative decimal

number? This one presents a positive.

The reason for this check-up is because if the decimal number

was negative you need to look for a non-stop flow of 1s in your

table whereas if it was a positive decimal number, you need to

look for a non-stop flow of 0s. Let me explain:

So there are continuous flows of 0s in both sides:

But you have to remember the new position of the floating

point has to have the number 0 before it (With a negative

decimal number, the new position of the floating point has to

have the number 1 before it)

So if we move out floating point to the right:

This won’t work as there is a 1 before it so we move our floating

point to the left instead:

Now we find out our mantissa:

The reason why we ignore the continuous flow of 0s after the

position of the new floating point is because they are not

significant.

You have just worked out the mantissa which is as shown here

01111 but what of the exponent? Well that’s easy to work out

too. So, from your new position of the floating point, do you

have to go right or left and how many times before reaching

the old position of the floating point:

Three places to the right so it is going to be exponent 3 and

you need to write it in binary form, use the exponent table:

And well done! You have your answer! So, the normalised form

for 7.5 is 01111 011 with 01111 being the mantissa and 011

being the exponent.

If we want to convert –7.5 into normalised form this is how it’s

done:

I look for a continuous flow of 1s:

So I move the floating point to the left up until the continuous

flow of 1s:

So my mantissa is 10001, remember you ignore the continuous

flow of 0s after the new position of the floating point because

they are not significant

And now to work out the exponent, how many times does the

floating point have to move to reach its old position from its

new position, and does it have to travel left or right?

I would have to travel 3 places to the right so the exponent is 3,

time to represent this in binary form using the exponent table:

So the normalised version of floating point number –7.5 is

10001 011 with 10001 as the mantissa and 011 as the exponent

Note: When deciding how long your mantissa should be, unless

it strictly says in the question your mantissa has to be this x

number of bits long, calculate the mantissa as shown above

Spec reference:

(h) Floating point arithmetic, positive and negative numbers, addition and

subtraction.

Once you master the previous spec point learning, learning this part

will be pretty easy

To add floating point numbers in normalised form, your first of

all get some floating point binary tables and work out their

binary forms like this:

Now you just apply the rules of adding binary numbers to get

your answer:

Now you just have to normalise your answer, since we are

adding numbers we will have to move the floating point to a

point of continuous flow of 0s where the number before the

new position of the floating point has to be 0 (Basically you

apply the rules of normalisation for binary numbers of positive

decimals)

So, the answer is 011011 011 with the mantissa being 0110011

and exponent being 011

To subtract it’s not very simple, you will have to convert both

normalised forms into their decimal denary forms, work out the

answer and turn that answer into normalised form.

This is basically 3 – 5 which is –2, the binary table you use

should only be as large as the number of bits in the mantissa

they give you. So convert –2 into normalised form:

As you can hopefully see, we used a smaller binary table to

convert –2 into normalised form because there is no need for a

larger binary table, so a binary table with –2 at the highest is

enough. And now how many points to move, left or right from

the new floating point position before returning to the original

floating point position?

We moved one place to the right so the exponent is 1.

Therefore the answer is 10000 001 with 10000 as the mantissa

and 001 as the exponent

Spec reference:

(i) Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR.

Shifts

A left shift is when you move a binary number on a binary table

to the left:

And the 0 simply gets lost, the empty space it left behind is

replaced with a new 0

 A right shift is when the binary number on a binary table shifts

to the right:

The 1 or 0 that are moved out are simply lost and their place is

replaced with a 0. BUT this is a right logical or unsigned shift

and its symbol is this:

With a right arithmetic or signed shift represented like this:

The binary table has –128 or the largest number in the binary

table is a negative:

So, when the binary number is shifted to the right, the 0 or 1 is

lost but their place is replaced with a 1:

Circular shifting is as its name suggests, when the binary

number in a binary table is moved to the right or left but the 1

or 0 that is squeezed out returns to the other side of the binary

table:

Masks

A run-down of the logic gates if you forgot them, as well some

new logic gates (There is only one of them lol):

Masks mean when they give you these logic gates operations in

a table like this:

In the question, they will tell you which gate this table is

representing, in this case it’s an AND gate (ANDing) so you

simply apply the logic of AND gates to get your answers:

And the same applies to XORring (XOR) and ORing (OR) gates

Spec reference:

(j) How character sets (ASCII and UNICODE) are used to represent text.

ASCII is used to represent English characters only and uses 8

bits to represent each character, UNICODE represents

characters from all over the world and use 16 bits to represent

each character. A downside of UNICODE is that it requires twice

as much space to represent each character than ASCII

Each character (Both in ASCII and UNICODE) is represented by a

unique binary number.

Spec reference:

(a) Arrays (of up to 3 dimensions), records, lists, tuples

Arrays come in three forms: records, lists and tuples.

In records, arrays can be accessed with just one index

In lists, arrays are 2D and can be accessed by two indexes:

In tuples, arrays are 3D and can be accessed by three indexes:

Lists are dynamic data structures, meaning they can change size

during execution. Tuples on the other hand are static, meaning

they cannot change size during execution.

Arrays in general also store ONE type of data only, they can

contain either integers or strings but not a mixture of them.

You also need to know how to use records in programming.

First you define a record structure (Like a record template):

Then you declare variables (creating new records basically) for

the record structure, so here you are creating two records for

two students:

Then you assign data to the fields of the variables (records) you

have just created:

Here is the overall code from the three parts of code combined:

Spec reference:

(b) The following structures to store data: linked-list, graph (directed and undirected),

stack, queue, tree, binary search tree, hash table.

There is not much to know for this apart from actually looking

at the data structures and maybe knowing some of their

functions.

Graphs

Graphs are dynamic data structures.

What are they used for? They are used to model things like:

Navigation systems, data transmissions, web page links and

social media trends.

This is a graph:

A directed graph is a graph that has edges pointing to one

direction only:

A undirected graph is a graph that has edges pointing to both

directions:

You will also need to be familiar with something like this:

And you will be excepted to draw a graph, either a directional

or unidirectional by looking at the indexes on the left. They can

ask you to draw from a graph as well, like this:

Which literally means the same thing as this, the only difference

is the way they presented it:

So don’t let that fool you and when drawing graphs in the

exams, USE A PENCIL so that if you make a mistake you can rub

it off and correct it.

Spec reference:

(c) How to create, traverse, add data to and remove data from the data structures

mentioned above. (NB this can be either using arrays and procedural programming

or an object-oriented approach).

Here is a linked list:

Just ignore the red colour, I had to hide something, no not porn...

This is the table that goes with it:

Now we are going to add new data into this linked list, this is

how it’s done:

1. Insert the new data item into the location pointed by the

free storage pointer (Which is in item location 7)

2. Update the free storage pointer

3. Work out where in the list the new item should be added

4. Once that has been decided on, update the alpha pointer

value of the item that will precede the new data item to

the item value of the new data item

5. And update the alpha pointer value of the new data item

to the item value of the data item that will succeed it

In order to remove data...

If the data item to be removed is in the first position:

1. Update the starting pointer value to the item value of the

data item you want to delete

2. Update the free storage pointer

If the case is otherwise:

1. Update the alpha pointer value of the data item located

before the data item you want to delete, to the item value

of the data item you want to delete

2. Update the free storage pointer

3. Starting pointer does not go anywhere, it stays where it is

Note that free storage pointers point to the location that is free

of data and starting pointers point to the newest data item in

the linked list:

In order to traverse (scour) a linked list:

1. Start at the data item pointed by the starting pointer value

2. Go to the data item pointed by the starting pointer value

3. Output the data item

4. Set the pointer value to the item value of the next data

item according to the alpha pointer value of the current

data item

5. You do this until the pointer value reaches 0

In order to search a linked list for a data item:

1. Start at the data item pointed by the starting pointer value

2. If the data item at the start is the data item wanted, then

output that data item

3. Else, set the pointer value to the item value of the next

data item according to the alpha pointer of the current

data

4. Repeat this until the data item is found or the pointer

value is 0 (Which means the data has not been found)

5. If it’s not found, just output “Data item not found”

Trees and binary search trees

This is a tree:

Funny example I know, but we are trying to add the word and,

in this tree, so in order to insert data into this tree, this is the

algorithm you have to follow:

1. If tree is empty (As in like this whole tree is empty), enter

data item at the root (the first node) and stop

2. The root is the first node

3. Repeat steps 4 and 5 until a node which is null is reached

4. If new data item to be inserted is less than the value in the

current node, go left, else if the new data item to be

inserted is larger than the value in the current node, go

right

5. The current node is the node reached, the node is null if

there is no node

6. If the node is null, create new node and add new data item

into it

We are performing this search alphabetically just in case you

are confused.

There are three ways to traverse (scour) a tree: pre-order,

inorder and post-order.

Pre-order:

In order to traverse this tree pre-order way you start from the

root and go left, THEN right. You always take the left side of the

tree and once you reach the end of the left side you go back up

one node at a time and back down to get at the right nodes.

You will then end up at the root (the first node) again and will

have to traverse the right side of the tree BUT still you have to

do the left branches of the right side first. If this is all confusing

you then don’t worry, this example should make quick work of

your understanding:

Key rule to remember: Parent node, left THEN right

Inorder:

Here is the same tree:

The rule is left, parent root and right. What this means is that

you start from the left side of the tree with the most left side

node which in this case it’s D. It then goes back up one node to

visit the parent node (In this case B) and goes back down to

visit the right nodes. Goes back up again to find any other

nodes connected and repeats this process. It eventually ends up

in the root and begins to scour the right tree but always scours

the left side of the right tree first, ignoring any parent nodes,

once it reaches the left most side of the right tree that is where

the scouring actually begins and you repeat that process

mentioned earlier of left, parent node and right. If there is no

left side on the right side of the tree then you just scour the

nodes as you move down like shown here:

Alternatively, if there is a left side in the right side of the tree

this is what happens:

So, the inorder traversal of this tree is: Carol, Craig, Dave, Mark

and Sam

Key rule to remember: Left, parent node THEN right

Post-order:

This is pretty much like inorder traversal except you don’t scour

the parent nodes, just the nodes connected to the parent nodes

(excluding the ones who are parent nodes themselves like E in

the picture below) and yes you always start from the left side of

the tree.

Once all the nodes have been visited, you can visit the parent

nodes by traversing up and up but once you reach the root, it’s

always the LAST one to be visited. Again, like in inorder

traversal, scouring begins in the left most side of the right side

of the branch, repeating the left, parent node and right

processes except you leave out the parent nodes. And then just

like mentioned earlier, you can visit the parent nodes by

working your way up them. Here is an example to simply this BS

in your head:

Key rule to remember: Left, right THEN parent node

Hash tables:

This is a hash table, this whole thing is a hash table.

So, what is happening here is the keys of the data items are

used within the hash function to produce a hash value. That

hash value is then used to point to a location within the array, if

the location is free the data item is stored there, if not it looks

through the locations in a linked list which is part of the

overflow until a free storage location is found.

So, here we are trying to add Amie, the Hash value generated

was 1 so we go to location 1 only to find out it has been taken

over by Dave, so we look through the linked list part of the

overflow and find a free storage location so store Amie there.

In order to search an item, we firstly use the keys of the data

items into the hash function to produce a hash value. The hash

value will point to a location of the array so we go to that

location, if the data item wanted is found there, we output the

data item. Else we look through the linked list in the overflow

until the wanted data item is found.

To delete a data item from the hash function is very similar, we

use the keys of the data items in the hash function to produce a

hash value, the hash value will point to a location in the array. If

the data to be deleted is found there, mark that location as free

storage space, if not look through the linked list in the overflow

until the data item to be removed is found there and mark that

location as free storage space. You then update the free

storage pointers in the linked list

Stacks

Stacks are a LIFO (Last In First Out) data structure – This means

that the last data item inserted in a stack will always be the first

one to come out

In order to insert a new data item into the stack, you first check

to see if the stack is full, if it is you report an error and stop

(Because since it’s full you can’t add anything). Otherwise you

increment the stack pointer and insert the new data item into

the location pointed by the stack pointer

In order to read/delete a data item from the stack you first

check to see if the stack is empty, if it is you report an error and

stop (Because what is there to delete or read if there is nothing

in the stack?) Otherwise you copy the data item from the

location pointed by the stack pointer and decrement the stack

pointer.

Queues

This is a queue:

To insert a new data item into a queue, you first check to see if

the queue is full, if it is you report an error and stop. Otherwise

increment the back pointer and insert the new data item into

the location pointed by the back pointer

To delete/read a data item from the queue, you first check to

see if the queue is empty, if it is, report an error and stop.

Otherwise you copy the data item from the location pointed by

the front pointer and increment the front pointer

Spec reference:

(a) Define problems using Boolean logic. See appendix 5d.

Pretty much the same as:

Spec reference:

(i) Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR.

Except the notations outlined by the red boxes are all you need

to know for the gates (But you will obviously have to know how

to draw the gates themselves as well):

Spec reference:

(b) Manipulate Boolean expressions, including the use of Karnaugh maps to simplify

Boolean expressions.

Again, this will be pretty challenging to explain, but again the

concept is easy to understand

So here is your Karnaugh map:

So, you have your expression here, you place the values of the

expression in the left side of the table corner. You then split

your expression into small chunks like this:

You have to split up your equation into small chunks, otherwise

it WILL be impossible to do this map. Then with AB you place in

different and possible input combinations as you would in a

truth table, same for NOT C with a 1 and 0.

Now what you do is work out each chunk of the equation in

your head, before doing that you need to look at the values the

equation contains and choose the grids that have those values

with 1 with it. So, for the first equation we will choose grids AB

with 01 and 11 as the Bs in both of these have a 1 with them. As

for NOT C we will choose the C with the 0 as NOT 0 equals 1.

 So, we are only going to use these girds:

And now we do the equation in our head, ignore the As, just

ignore them. You work with the values in the chunk of the

equation only and ignore the rest. If the result is 1 we place it in

the grids, otherwise we place a 0:

The results were 1s so we put them into the grid. Now for the

second equation it says A AND B so we need to find a free grid

with both AB having 1s and there is one:

You might be wondering “Wait, why don’t we use the gird with

AB 11 and C 0 too?” Well that grid has been taken (Can be with

1 or 0) so you just ignore it, any grids which have been taken

you ignore them.

So once again we do the equation in our head, just ignore the

C, remember, always work with the values in the chunk of the

equation and NOTHING else outside that chunk:

And finally. it’s OR C, so we need to find grids with Cs that have

1s and there happens to be 4 of them in the bottom:

Since one of the girds has been taken, you just ignore that grid

and work with the rest:

You completed the gird, but you are not finished yet, you need

to simplify your equation. How do we do that? Well first group

all 1s in 4s or 2s in any way possible BUT they must not contain

a 0. Whatever equation they give you, you always group the 1s

in 4s or 2s, any other way is wrong:

And now we ask ourselves, which values (A, B, C or NOT C) are

constantly significant with 1s in these boxes? Well for the box

that has 1s in a box shape, B is the one with 1s:

It cannot be C because it’s not constantly significant with 1s. (As

the C contains both 0 and 1)

So that is the first box done, what about the second box with 1s

stored in a linear way? Well the only value constantly significant

with 1s in that box is C:

And now all we do is write B with whatever gate was left behind

when we were splitting our equation and write C

Or vice-versa; C v B

If more than one gate value was left behind whilst splitting up

the equation in chunks, you will need to use brackets where

appropriate. If more than one gate value was left behind, it’s

very likely your simplified equation will contain at least three

letters

Spec reference:

(c) Use the following rules to derive or simplify statements in Boolean algebra: De

Morgan’s Laws, distribution, association, commutation, double negation.

This section is all about simplifying Boolean equations, there

are some laws or rules you need to remember, here they are:

Rule 1: De Morgan’s Laws:

This says that an OR can be changed to an AND or vice versa,

however when this change is done, both of the terms have to

be NOTted (Basically you have to put NOT near both of the

terms)

Rule 2: Distribution

This law says that you can multiply the first term twice and put

each of them alongside the other terms in the equation using

the operator near the term that was multiplied before it was

multiplied (If you get what I mean) and put it in between. The

two term brackets are then held together by the other operator

Rule 3: Association

This law says you can regroup, add or remove brackets

Rule 4: Commutation

The order of the terms is not important

Rule 5: Double negation

You can cancel out double NOTs

Rule 6: Absorption

The outside term can always “absorb” all the terms and

operators associated with it, but it can only happen if these two

rules are met:

1. The operators (the gates) must be different from

eachother inside and outside the brackets

2. The outside term must be inside the brackets as well

And here are some additional rules that needs to be learnt:

Here is a worked example:

This is the equation we are trying to simplify and here are the

steps:

Step 1: Remove the brackets -

Step 2: We can apply one of the general rules

On the 4th term:

Step 3: We can apply one of the general rules

On the 1st and 2nd terms:

Step 4: We can apply the rule of absorption on the 3rd and last

terms:

Step 5: We can once again apply the rule of absorption on the

first and second terms:

And this is as simple as the equation can get

Spec reference:

(d) Using logic gate diagrams and truth tables. See appendix 5d.

Again should have done this at GCSE and is already covered by

the spec point -

Spec reference:

(i) Bitwise manipulation and masks: shifts, combining with AND, OR, and XOR.

Spec reference:

(e) The logic associated with D type flip flops, half and full adders

Half adders and full adders

This is just binary addition done in a table and represented by

logic gates, literally....

This is a half adder, so here 0 + 0 in binary is 0, so the digit is 0

and the carrying digit is 0. 1 +1 in binary is 0 with 1 carry so

digit is 0 and the carry is 1. Easy

A full adder is not much different from a half adder, it just has

three values to be added:

So same old rule applies here, 1 +1 +1 in binary is 1 with 1 to

carry, therefore the digit is 1 with a 1 to carry and so on....

They might give you something like this in the exam:

Don’t be fooled by the new features, this is just binary addition.

You do 1 + 1 = 0 with 1 to carry so you put the 1 in the next

column as a carry and use that 1 with your next calculation and

so on.....

D type flip flops

How did your exam go? I flopped, I flopped and I flopped....

So here all you need to understand is something called a clock:

You will be given something like this in your exam:

Now you simply apply your logic gates rules here, the only

catch is the values of Q and D, how do you get them?

You use this graph they will give you:

And it will already be completed so don’t worry about drawing

the lines, all you need to know is that the Q will reach one once

the clock is at a rising edge. Just ignore the D

So now the value of Q is 1, the only way the value of Q will

change again is that if the value of D changes at the same time

during the rising edge of a clock:

As you can see, the value of D changed just as there was a

rising edge from the clock, therefore the value of Q has now

changed. So here are our updated values on the table -

YES! FUCK YEAHHHHHH! Finally, you finished learning about all of

this graph, mathsy kind of shite. Just one more section to go before

you finish everything needed for paper one....on and forward!

Legal, moral, ethical and cultural issues
Ah finally we get to leave all that sciency, mathsy kind of stuff behind

and move on to some humanity, no we are not talking about saving

humans. You will be learning about laws and ethical issues involved

with using computers, if you are thinking of studying law at university

then you can start off by learning these few laws to.....you know give

you a headstart 😉

Spec reference:

(a) The Data Protection Act 1998.

This law sets out the requirements for storing and using

personal data of individuals.

This is what the law involves:

• Data must be collected lawfully, so customer rights are not

breached

• Data collection should not be excessive in order to NOT

encourage spam emails

• Data should not be kept for any longer than needed

• The owner of the data has the right to demand the data to

be changed

• Data should be accurate and kept up to date

• The organisation has to set in place good security

measures to protect the data from unauthorised access

• Data should be used for the specified purposes only

Spec reference:

(b) The Computer Misuse Act 1990

This is a law which makes unauthorised access to a computer

illegal. It makes the following things illegal:

• Accessing a computer with the intent to commit or

facilitate further crimes

• Accessing a computer with the intent to sabotage its

operating

He is my guy!

Spec reference:

(c) The Copyright Design and Patents Act 1988.

This law protects the property rights belonging to an individual

or organisation.

It makes it illegal to:

• Copy work

• Modify work

• Distribute work

Of other people without their permission or a license

Spec reference:

(d) The Regulation of Investigatory Powers Act 2000.

This law gives the right to certain organisations (Like the police,

MI6 etc..) to monitor internet behaviour and communications

The law gives these organisations the right to:

• Demand customer surveillance from internet service

providers

• Carry out mass surveillance

• Monitor an individual’s internet activity

• Demand that internet service providers fit in equipment to

facilitate surveillance

• Demand confidential information from internet service

providers

Spec reference:

The individual moral, social, ethical and cultural opportunities and risks of digital

technology:

• Computers in the workforce.

Computers can work for longer, without breaks, they can work

faster and are more accurate in their work. Many computers

have replaced low level jobs that humans used to do, an

example is scanning in the checkout at a supermarket.

Automated decision making

Computers can also make decisions for humans in everyday

situations based on a set of rules. For example, should a door

fitted with a computer mechanism call the police when

someone other than the owner enters the house? Or a fridge

which can decide which foods to throw away based on their

expiration date, or a kettle deciding how hot or cold does it

need to boil certain drinks etc....the list is endless

These algorithms should only be SUPPORTING the decisions of

humans and not replacing their judgment.

Artificial intelligence

The artificial intelligence or AI for short is an algorithm which

works in order to appear intelligent. An example would be a

knowledge-based system.

A knowledge-based system attempts to replicate the

performance of an expert human for a specific task

A knowledge-based system is made out of three parts:

• The knowledge/rule base: This contains all the knowledge

a human expert would have

• Inference engine: This searches the knowledge/rule base

for possible answers to queries

• User interface: This allows the user to input queries so they

can be processed by the knowledge/rule base and display

the results back to the user

Environmental effects

Computer parts have toxic chemicals and metals in them which

are very harmful, however they can be recycled.

Computers can help with environmental effects, for example:

• Computers can control car engines, making sure they use

as less fuel as possible and creating as less pollution as

possible

• Computers mean people can work from home than drive

to work

• Working from home means less electricity is used to

power up big offices

Censorship and the internet

Censorship is the blocking of resources from being published,

distributed or viewed. People or organisations may censor

certain things on the internet for ethical, religious, safety or

political reasons.

Perfect example is North Korea where the dear Leader Kim Jong

Un censorships anything on the internet which goes against the

regime’s values. This results in a huge amount of ignorance

within the population

!

Monitor behaviour

There are three types of behaviour monitoring:

• There is one where the user wants to be monitored by

using sport watches etc..to help improve their lifestyle

• One called passive monitoring like CCTV cameras where it

can help reduce crimes, but some argue this is invasion of

privacy

• Last one is forced tracking, where people like criminals are

forced to wear tracking devices so authorities can track

their movements

Also, employers monitor their employee’s behaviour by keeping

a record of the websites they visited during work hours. Some

argue this is necessary so employees do their jobs, others argue

this is invasion of privacy.

Analyse personal information

Data mining is when large amounts of data are analysed to find

out patterns in order to predict the next actions. This is used

when recommending products to customers after they have

brought something online like in Amazon. It can be used by

many businesses to know what their customers want to buy so

they can save on a lot of money by not spending on buying

unnecessary stocks, and spend more on buying things which

their customers want. This can help to increase the profits of

many businesses.

Data collected on individuals is not just about shopping, it can

also be about:

• Gaming patterns

• Social media interactions

• Search histories

• Travel plans

• Online chats

The dates and times of when you were doing these things can

be logged.

Piracy and offensive communications

Piracy is when copyrighted material is distributed on a large

scale, materials can be accessed for free or for a reduced price

when others other than the owners distribute them. The good

side is that people obviously enjoy watching and using these

resources but should the owners of these materials really suffer

major financial loses because of this? Some of them have jobs

based on this, so they can they can go bankrupt if piracy

continues.

Ah offensive communications! A lot of people, including YOU

refer to this as trolling! And you know what trolling is right? I

bet at some point on the internet, you were a troll yourself.

You should well know what a troll is, but for those who have

been living under a rock, a troll is someone who posts offensive

messages online in order to cause arguments.

The YouTube comments section is a great example of this,

especially on far-right political channels. Here is one comment

section from one of these channels:

Now I am no political expert, but any sane person reading

comments like this would always ask themselves “What are

these people on about? Can they even think?” Because nothing

which trolls like these say makes sense, not to mention all of

these people WANT to start arguments or some kind of

aggressive behaviour online. Typical troll behaviour

Layout, colour paradigm and character sets

In different countries, text on webpages are layered differently.

In the west, writing on a webpage will start from the left whilst

in Arabic writing will start from the right:

So, it will be more appropriate to put some of the user interface

features on the left when creating a website, to make it more

suitable for everyone in your audience to use it.

Also, on the topic of colours, colours mean different things to

different people. To some people, the colour red may mean

love and caring, but to someone else it can mean danger, evil

etc...

Colours are also seen different by many cultures, in the west

green means nature and luck, but in China it means infidelity

(unfaithful). So, colours need to be chosen carefully when

developing a website for international use

And finally, for character sets, if your website is for an English

audience then just use ASCII, otherwise use UNICODE.

OCR A level Computer Science, Algorithms

and Programming

This section will be focusing on the second paper, the second paper

there is a lot of programming and logic apply questions so there is

not much to learn. However, you will have to use your brain in order

to get the top marks in this paper.

Elements of computational thinking

Spec reference:

(a) The nature of abstraction.

Abstraction is removing unnecessary detail, and only keeping or

adding the relevant details useful to the user. An example

would be the London Underground map, that map is easy to

understand right?

Spec reference:

(b) The need for abstraction

We need abstraction to make it easier for users to understand

certain models. For example, a tourist would only want a city

map, a satellite map of the city is still a map of the city but the

tourist will find it very hard to use it for their needs. Therefore,

they are better off using a tourist map, and that is an

abstraction of the satellite map:

Satellite map of London

Tourist map of London

Spec reference:

(c) The differences between an abstraction and reality.

Well...isn’t it obvious? Reality is reality and abstraction is...not

the reality lol. Reality is where no detail is removed or added to

a model, it’s kept exactly as it is. In an abstract model, certain

things are removed, added or highlighted. So let’s go back to

our satellite and tourist map. The tourist map has all the

physical features like grass etc..removed. It has many famous

tourist attractions highlighted and roads are given label as well

as highlighted. All the small urban areas have been removed

and only the big ones are highlighted.

Spec reference:

(d) Devise an abstract model for a variety of situations.

This is where you will be given certain scenarios in the exam

and be asked to propose an abstract model of something.

These are the tips you can follow:

1. What does the user want?

2. Who is the user?

3. What is the scenario?

4. What are the unnecessary details to be removed?

When answering questions on this, just name the features of

the abstract model, don’t say what would you remove AND add

instead as it will take too long. Just say what would you add,

highlight or remove in separate sentences.

So, for example, propose an abstract model for this map for a

tourist:

1. Highlight important roads

2. Give road labels

3. Highlight important tourist attractions

4. Remove urban areas which are not significant

5. Highlight public services

6. Add a key

You don’t say: “Remove the useless roads and highlight

important roads” all in one sentence as:

1. They kinda mean the same thing and

2. It’s just too long and you won’t be given enough space to

write it in the exam

Spec reference:

(a) Identify the inputs and outputs for a given situation

This is where you will be given a scenario to develop a program

or something like that, and you will have to identify the inputs

and outputs of the program or algorithm that you are going to

create. So, for example to create a program which runs ATMs,

what would the outputs and input required for the programs?

ALWAYS start with the outputs as this is generally easy, a

program cannot be a program if it does not give any outputs.

So, the outputs (showing the results of the processing TO THE

USER) of the ATM program would be:

1. Screen display of options and balance

2. Printing a receipt

3. Moving the ATM lid to dispense cash

Now that you have your outputs, it’s easy to identify the inputs,

what inputs would be needed in order to generate these

outputs: (remember an input is anything which the user inserts

into the program)

1. PIN number

2. Card read

3. Selecting the amount of cash to receive

4. Selecting the option of wanting the receipt

Of course, always think of the obvious inputs before moving to

the more detailed ones likes 3 and 4.

Spec reference:

(b) Determine the preconditions for devising a solution to a problem

This is where you will have to determine existing conditions

which can affect the development of your solution, here are the

questions you can ask yourself before developing a program?

1. Is the solution technically feasible?

2. Is the solution economically feasible?

3. What is the budget available?

4. How much time is there to develop the solution?

5. Is the solution compatible with different operating

systems?

6. Does the solution have to cater to disabled people as well?

Spec reference:

(c) The nature, benefits and drawbacks of caching.

Caching is when instructions or data are moved from the hard

disk on secondary storage to the main memory just in case they

are needed again by the program using them until it ends. A

more advanced version is prefetching, where instructions and

data are fetched from the RAM to the registers or cache within

the CPU before the CPU actually requires them.

(This is how caching works which you looked at in the second

spec point way back, but you don’t really need to know this)

 Benefits of caching:

• Results in faster processing speed

• Results in more efficient processing

Drawbacks of caching:

• It is difficult to program it

• The wrong instruction or data may be fetched, so it has to

be thrown away to fetch the right one. This can disrupt the

sequence of the data or instructions which will make it

hard to maintain their sequence

Spec reference:

(d) The need for reusable program components.

The reason why we need to reuse program components is

because it saves time and money to develop a code. Here are

the ways in which you can reuse components of a program:

• Code the components as functions or procedures

• Use a library of code

• Use a component of one program across different

programs (Basically use a feature of a program like a

button from one program into other programs like Word

etc..)

• Sell a component of a program to a third party (Like

Facebook, this is why when you want to invite friends into

a game, it links you directly to a screen with Facebook

style)

Spec reference:

(a) Identify the components of a problem.

This section is about stepwise refinement.

Stepwise refinement is when a problem is spilt into smaller

tasks, and those smaller tasks are further split into smaller sub-

tasks until a programmable solution for each of them can be

found.

Spec reference:

(b) Identify the components of a solution to a problem.

This is when after you have done stepwise refinement, you need

to identify the components which will allow you to solve the

sub-tasks. So, let’s go back to our wages diagram:

In order to solve this task, we need to identify the components

(things we need) which will help us solve this task. So, to output

a wage slip you need:

• The employee’s home address

• Employee’s name

• Number of hours worked

• Pay per hour

• Employer’s name

• National Insurance Number

And many other things in order to output a wage slip

Spec reference:

(c) Determine the order of the steps needed to solve a problem.

When writing a program, you need to think of the order of

steps that a user will have to take in for the program to work.

For example, when creating a taxi booking app, the user will

first have to put in their starting place and their destination.

THEN they can select which taxi car they may want, and then

they can choose their prices and so on.

However, in a program like Word, there is no way to predict the

user’s order of steps. You can’t really use Word in a particular

way to make it work, so you will have to program your solution

in a way which lets the user access the various features of it in

any order

Spec reference:

(d) Identify sub-procedures necessary to solve a problem.

Literally the same as the following spec point:

(a) Identify the components of a problem.

Except with procedures instead, so if you are going to create a

procedure which will calculate wages, you need to create sub-

procedures of it until you can find a programmable solution to

each of them. So, in order to create a procedure which will

calculate wages, I need a procedure which calculates the daily

pay, a procedure which deductions, a procedure which

calculates the number of hours worked etc....basically the sub-

procedures are everything in your stepwise refinement diagram:

Spec reference:

(a) Identify the points in a solution where a decision has to be taken.

(b) Determine the logical conditions that affect the outcome of a decision.

(c) Determine how decisions affect flow through a program.

This is basically flowcharts, no like literally I am being serious.

With decision points of a flowchart, it is possible to have many

decisions called cases like this:

Spec reference:

(a) Determine the parts of a problem that can be tackled at the same time.

All I can say here is an example: Imagine we are building a

house, whilst one guy fits the roofs, another one can keep on

making the walls, and another one can make the floors, and

another one can install the pipes and electricity etc..all at the

same time.

The same can be done with programs, where different codes

can each run on more than IDE (Like Python GUI) at the same

time.

Spec reference:

(b) Outline the benefits and trade-offs that might result from concurrent processing

in a particular situation.

Concurrent processing: This is when more than one process

from the same program is being executed, with each process

being given a slice of the processing time.

Parallel processing: This is literally the same as Multicore

processing, when more than one core is each executing

instructions the same time

Benefits of concurrent processing:

• More instructions are executed per second

• Processor time is not wasted

But a drawback would be:

• Processing speed can slow down if more than one user is

trying to perform the same action

Benefits of parallel processing:

• More instructions are being executed at the same time

• Improves the performance of graphics processing

But a drawback would be:

• It’s pretty expensive as more cores have to be brought

Problem solving and programming

Spec reference:

(a) Programming constructs: sequence, iteration, branching.

Three programming constructs are: sequence, iteration and

branching.

Branching/Iteration: This is when a set statements are executed

again for a certain number of times. There are two types of

branching: count controlled iterations and condition controlled

iterations.

Count controlled iteration is when a set of statements are

executed again for a set number of times:

Condition controlled iteration is when a set of statements are

executed again and again until a condition is met:

Sequence is when statements are executed in order, one after

another:

Selection is when a set of statements are executed based on a

condition:

Spec reference:

(b) Recursion, how it can be used and compares to an iterative approach.

Recursion is when a function calls itself, without user input.

Before we dive into some example, you need to know what a

factorial number is.

A factorial number is the product of all the numbers multiplied

together, which are all less than the original number (So like

5x4x3x2x1 = 120 or vice-versa 1x2x3x4x5 = 120 so 120 is the

factorial number of 5, or 3x2x1 = 6 so 6 is the factorial number

of 3 and so on. Remember, you don’t need to know the actual

definition, just know what it is)

A pseudocode for a factorial number generator in iteration

mode will be:

Function factor(n):

Answer = 1

Counter = 1

For counter = 1 to n:

Answer = Answer x Counter

Next

Factor = Answer

End function

A pseudocode for a factorial number generator in recursive

would be:

Function factor(n):

If n = 0 THEN

Factor = END

Else THEN

Factor = n x factor(n-1)

End if

End function

Recursion is not very efficient for memory, this is because each

time a recursive function call itself, the memory has to

remember where it is before executing the new call so it knows

where to return afterwards. It also stores all the values

produced by the variables because they are all local to the

function

This is done by using stacks.

Spec reference:

(c) Global and local variables

Local variables are defined within a module and are only

accessible and usable within that module. They cease to exist

once the module in which they are in has finished executing.

They can overwrite the values of global variables with the same

names.

Global variables are defined at the start of the program and are

accessible and usable throughout the whole program. They

cease to exist when the program stops executing.

Spec reference:

(d) Modularity, functions and procedures, parameter passing by value and by

reference.

The difference between a function and a procedure is that a

function takes in parameters, carries out a specific task and

returns a value whilst a procedure takes in parameters and

carries out a specific task but does not return anything.

Parameters can be passed by their value or reference. By value

is when the actual data to be used are passed on:

By reference, is when the locations containing the data to be

used, are passed on

Spec reference:

(e) Use of an IDE to develop/debug a program.

An IDE is a user interface which provides a set of tools and

resources to help a programmer code. The most common

example you know very well about, is Python GUI.

An IDE has the following tools which help the programmer to

code:

• Run-time environment: Allows the programmer to run the

code during development time to check for logical errors

• Code editor: Comes with features like automatic

indentation and syntax completion to help speed up

programming

• Error diagnosis: Finds errors, points to their location and

suggests solutions to them

• Translators: These compile high level or low level language

code into executable machine code

• Auto-documentation: This tracks all the variables, modules

and comments made by the programmer to help with

program maintenance

Spec reference:

(f) Use of object-oriented techniques.

Basically, you only use object-oriented techniques when you

want to create objects like buttons, icons or real life objects into

a program like trees and monsters in a game etc...

Spec reference:

(a) Features that make a problem solvable by computational methods.

Although a problem can be technically solvable, it does not

mean it’s practically solvable. So, what do I mean by this?

For example, in order to crack the password of a bank account,

you can do that using brute force, however it will take more

than 1 million years to actually do that! And even then, the

cracking will be like 2/3 complete so cracking the password of a

bank account will be solvable with a computer but not in a

practical sense as...come on we will all be dead including the

universe after 1 million years!

Features which make a problem solvable by computation

thinking:

• Enumeration, can the problem be solved by an algorithm

which performs an extensive search?

• Simulation, can the problem be modelled in a computer?

• Theoretical approach, can the problem be broken down

into pure theory? So, it can be solved by mathematics?

Spec reference:

(b) Problem recognition.

Of course, in A level Computer Science you will have to know

the more advanced definition of problem recognition, this is

the ability to know there is an issue or some parts of an existing

process need attention.

When you need to recognise a problem in the exam, mainly

with codes, ask yourself these questions?

1. Is there a problem?

2. If so, what is it?

3. What data do I need to fully understand this problem?

4. What variables are there which can change the current

state of the problem?

5. What processes do I need to consider when trying to solve

the problem?

And finally:

To what extent is this problem solvable?

Spec reference:

(c) Problem decomposition.

Same as spec point:

Spec reference:

(b) Identify the components of a solution to a problem.

Spec reference:

(d) Use of divide and conquer.

Divide and conquer is reducing the size of a problem with

successive iterations.

So, for example when the police are trying to shortlist suspects,

they use a set of criteria which build up in successive iterations

to try and find their man.

So, a man has committed a bank robbery:

The police have their suspects and this is how it goes:

1. First remove all suspect above the age of 40

2. Then remove all suspects below the age of 20

3. Remove all female suspects

4. Remove all suspect who don’t have facial hair

5. Remove all suspects who are below 6 foot tall

6. Remove all suspects who are above 6 foot tall

7. Remove all suspects who are not wearing a hoodie

8. Remove all suspects who are not wearing a hat

9. Remove all suspects without glasses

10. And finally remove all non-black suspects (Not being

racist!)

And there you have your man.

Similar thing works with algorithms, perfect example is the

binary search.

So here is a list of numbers:

8 5 9 3 7 5 0 9

Wanted number: 3

In binary search, first you order the list and then find the

median of the list (the middle data item):

0 3 5 5 7 8 9 9

(5 + 7 which are the medians is 12, divide that in half is 6 so 6 is

the median, even tho is not on the list, it’s still a median and we

use 6 as our median)

If the middle data item is less the wanted data item, the list

containing all the data items less than the middle data item,

including the middle data item itself is removed, otherwise, all

data items above the middle data item including the middle

data item itself is removed, a new middle point within the new

list is worked out and the process is repeated again and again

until the wanted data item it’s found. You will learn about this

in more detail later on.

Spec reference:

(e) Use of abstraction

Already covered by spec points:

Spec reference:

(a) The nature of abstraction.

(b) The need for abstraction

Spec reference:

(f) Learners should apply their knowledge of:

• backtracking

• data mining

• heuristics

• performance modelling

• pipelining

• visualisation to solve problems.

Backtracking

This is the process of building up towards a solution.

Abandoning partial success when the solution can’t be

completed and taking an alternative path to complete the

solution.

So, for example, you know when you are playing a game of

chess, you have that “wonderful” strategy to beat your

opponent, and late in the game you are like “Oh, you know

what, this strategy sucks” because you can’t beat your

opponent and therefore you start to look for an alternative

strategy. This is backtracking

Data mining

This is when large amounts of data are analysed and patterns

are found, they are used to predict the next actions of a user.

It is used for recommending similar product to customers when

they buy something online.

Big data is a word which means collecting large amounts of

data on a particular topic like food, travel times, gaming etc..

Heuristics

This simply using experience to try and find a solution, really

simple.

Heuristics is used because it may cost too much time and

money to find an exact solution. So, a solution produced by

heuristics is good enough but it won’t be the best solution.

Heuristics is also known as “The rule of thumb” methods

Performance modelling

This is the process of using mathematical approximations to

test models.

It may be used because actually testing the models may be:

• Unpractical (If a game needs to be tested with more than 1

million players to see how it handles that many requests, it

would be very hard to do this, so mathematical

approximations are used)

• Very costly

Pipelining

Same as spec point:

(d) The use of pipelining in a processor to improve efficiency.

Pipelining obviously results in faster processing speed

Visualisation

This is the ability to picture a problem and a solution

(Obviously, something ALL human beings use)

This is mainly about using diagrams and flowcharts, visual ways

of representing solutions.

Algorithms

Spec reference:

(a) Analysis and design of algorithms for a given situation.

Again, this is just flow chart and pseudocode. You need to know

how to follow algorithms, read these steps in order to help you:

1. What does the algorithm actually do? What is its purpose?

2. Work through each line of the algorithm step by step

3. Apply a different set of data to the algorithm and work

through it again

Spec reference:

(a) Analysis and design of algorithms for a given situation.

(b) The suitability of different algorithms for a given task and data set, in terms of

execution time and space.

There are two algorithms for searching:

1. Linear search

2. Binary search

This is Binary search:

So here is a list of numbers:

8 5 9 3 7 5 0 9

Wanted number: 3

In binary search, first you order the list and then find the

median of the list (the middle data item):

0 3 5 5 7 8 9 9

(5 + 7 which are the medians is 12, divide that in half is 6 so 6 is

the median, even tho is not on the list, it’s still a median and we

use 6 as our median)

If the middle data item is less the wanted data item, the list

containing all the data items less than the middle data item,

including the middle data item itself is removed, otherwise, all

data items above the middle data item including the middle

data item itself is removed, a new middle point within the new

list is worked out and the process is repeated again and again

until the wanted data item it’s found. You will learn about this

in more detail later on.

Linear search is when the wanted data item is compared with

every single data item in the list from the start until it’s found.

It’s simple and the data items do not need to be ordered,

however it’s pretty time consuming.

And then you have two algorithms for sorting:

1. Bubble sort

2. Insertion sort

With a bubble sort, two data items near each other in a list

swap their places if they are in the wrong order, then again two

data items near each other (including the one which was just

swapped) swap their positions if they are in the wrong order

and so on:

Example:

5 6 7 32 5 3

So 5 and 6 are fine as they are in order, 6 and 7 are fine as they

are in order, 7 and 32 are fine as they are in order, however 32

and 5 are not fine since they are not in order, so we swap the

places of 32 and 5:

5 6 7 5 32 3

Again, 32 and 3 are not fine since they are not in order, so they

need to have their places swapped:

5 6 7 5 3 32

And we simply work through this list again, using the same

process until the list is in order

With an insertion sort method, it’s pretty simple, basically take

one item from the list, one at a time and place it directly into

the correct position:

 7 9 5 8 3 2 6

So, 7 just stays there, 9 also stays there, but 5 needs to be put

before 7:

5 7 9 8 3 2 6

Now we work through the list again, from the start; so 5 is fine,

7 is fine, 9 is fine but 8 is not and needs to be put before 9:

5 7 8 9 3 2 6

And we work through the list again, from the start, 3 is not fine

so we put it into the correct order:

3 5 7 8 9 2 6

And repeat the same process again, until we have an ordered

list.

This is a queue by the way:

And it works exactly in the same way as a normal queue, in

terms of adding, removing and reading data. The only

difference is its visualisation

Spec reference:

(c) Measures and methods to determine the efficiency of different algorithms, Big O

notation (constant, linear, polynomial, exponential and logarithmic complexity).

You can calculate the complexity of the code in two ways. One

is where you count the lines of the code:

This code has 7 lines therefore it has a complexity of 7

However, with a code that has loops, you will have to find out

its complexity the other way:

So it has 7 lines of code BUT it has a FOR loop and three of

those lines:

Are part of the FOR loop, so the complexity of the code will be

3 +3n +1

The 3 is the first 3 lines of code, 3n being the FOR loop and 1 is

the last line of code.

What about for a code which contains nested FOR loops like

this:

In that case, the complexity of the code will be 5n2

In order to turn the complexity of a code into big O notation

you firstly start off with the complexity of a code:

3 + 3n + 1

And follow these two rules:

1. Remove all values except for the ones with the biggest

factor or exponent (squaring)

2. Remove any constants (the numbers)

So we remove 3 and 1 (As 3n is the only one with an exponent,

3n:

And we are left with 3n, now we follow the second rule which is

remove any constants, so we remove the 3 near the n:

And are left with just n, put a big O and some brackets and you

got yourself O(n) which is the big O notation.

There are many different big O notations, you need to learn

them all:

O(1) Constant complexity – This is where the algorithm always

executes in the same time, no matter what the size of the data

set is. This is the best algorithm

O(log n) Logarithmic complexity – This is where the algorithm

halves the data set with each execution. It’s very efficient with

large data sets. It’s a good algorithm

O(n) Linear complexity - This is where the performance of the

algorithm will be proportional to the size of the data set. So, if

the data set shrinks, the performance will also shrink. It’s a fair

algorithm

O(n2) Polynomial complexity - This is where the performance of

the algorithm is proportional to square size of the data set. It

will massively have its efficiency reduced with large data sets.

It’s a poor algorithm

O(2n) Exponential complexity – This is where the algorithm will

double its data set with each execution. It’s a very inefficient

algorithm and should be avoided AT ALL COSTS

Spec reference:

(d) Comparison of the complexity of algorithms

This section will be focusing on applying the different big O

notations to different situations:

Here are the examples we will work through to help you

understand better:

Example 1 -

Adding items to a list, just adding them, what Big O

notation/complexity would it be?

Answer: O(1) Constant complexity, because the size of the data

set does not matter as we are just adding data items into the

array.

Example 2 -

Searching data items in the array, what Big O

notation/complexity would it be?

Answer: O(n) Linear complexity, because the longer the data

set, the more items you have to search through

Example 3 -

In order to add new items into an array, within the sequence of

items in an array, the items will have to shuffle downwards, one

at a time to make space for the new data item to be inserted.

What Big O notation/complexity would it be?

Answer: O(n) Linear complexity, because the larger the data set

means the algorithm will have to shuffle more items

Example 4 -

What about performing a binary search in an array? What Big O

notation/complexity would it be?

Answer: Of course, O(log n) Logarithmic complexity, because in

binary search you always have to halve your list in order to

complete your search. So, the algorithm will have to halve its

data set with each execution, to find the wanted data item

Example 5-

Pushing and popping data items from stacks and queues? What

Big O notation/complexity would it be?

Answer: O(1) Constant complexity, because it does not matter

how large the data set is, we are simply pushing data items into

stack and queues, and popping them out

Example 6-

Searching through stacks and queues? What Big O

notation/complexity would it be?

Answer: O(n) Linear complexity, because the larger the data set

means the more data items, we will have to search through

Just remember that the Big O notation/complexity for a nested

loop is obviously O(n2) Polynomial complexity and for a

recursive function it is O(2n) Exponential complexity (Because

you insert a data item into a recursive function, but since the

function always calls itself, it technically doubles the data set

with each execution. Or at least doubles the data set on the first

execution)

Spec reference:

(e) Algorithms for the main data structures, (stacks, queues, trees, linked lists, depth-

first (post-order) and breadth-first traversal of trees).

Well the algorithms for stacks, queues, trees and linked lists

have already been covered. All you have to make sure is that

you write the algorithms for adding, removing or searching

data for the structures named above in pseudocode.

So, for example, for searching through a linked list, the

pseudocode will be:

Start at data item pointed by the pointer value

REPEAT

IF DataItem != WantedData THEN

Update pointer value to the item value of the next

data Item, according to the alpha pointer of the current

data item

UNTIL DataItem == WantedData

ELSE THEN

OUTPUT DataItem

END IF

END

UNTIL pointer value = 0

OUTPUT DataItem not found

Or a pseudocode for searching through a binary tree:

Start at root

IF WantedItem == Value in root THEN

OUTPUT WantedItem

END

ELSE:

IF WantedItem > Value in root THEN

Go right

ELSE THEN

Go left

END IF

END IF

Node = Current Node

REPEAT

IF WantedItem >Value in Current Node THEN

Go right

ELSE THEN

Go left

END IF

UNTIL WantedItem == Value in Current Node

ELSE THEN

OUPUT “Item not found”

Traversing graphs

There are two ways to traverse graphs:

• Depth-first, this is where you visit the first vertex, and

follow its branch as far as it will go and backtrack

• Breadth-first, visit the first vertex, then visit every vertex

connected to it and continue visiting connected vertexes

from left to right

A depth-first is done using a stack whilst a breadth-first is done

using a queue.

This is the algorithm for a depth-first:

Visit the first vertex

Mark it as visited

Push vertex into the stack

REPEAT

Visit the next unvisited vertex according to the one on top

of the stack

Mark it as visited

Push vertex into the stack

IF no more vertex to visit THEN

Pop vertex off the stack

END IF

UNTIL stack is empty

This is the algorithm for a breadth-first:

Visit first vertex

Mark it as visited

Push vertex into the queue

REPEAT

Visit all vertexes connected to the first vertex

Push the vertexes into the queue

UNTIL all vertexes have been visited

REPEAT

Pop vertex pointed by the front pointer off the queue

REPEAT

Visit all vertexes connected to the current vertex

Mark the vertexes as visited

Push the vertexes into the queue

UNTIL all vertexes have been visited

UNTIL queue is empty

Popping vertexes means removing them from the stacks or

queues, the vertexes to be popped off are shown by a stack

pointer for the stack and front pointer for the queue

Spec reference:

(f) Standard algorithms (bubble sort, insertion sort, merge sort, quick sort, Dijkstra’s

shortest path algorithm, A* algorithm, binary search and linear search).

Merge Sort

It’s kind of like binary search except it has its differences. Let’s

work through an example:

So here is the list of letters which we need to sort on

alphabetical order:

First, split the list in two:

Then split the list further:

And split them even further! Lol:

And now for each list (Two letters next to each other) you have

to swap the position of the letters with each other if they are in

the wrong order:

And now you have to work through these lists (2 groups of

letters together in 4s) separately. Compare the position of the

first letter in your first group (Which is B) with all the letters in

the other group of your list (In this case is A and H) and put

them in order, however if a letter comes after the position of

the first letter (H comes after B) then don’t put it down (So you

don’t put H down).

And do the same for the second letter (Which is D), except this

time you put down all the letters:

And follow the same process for the other list:

(Since bot F ang G come after C, you can’t put them down, only

C)

So now you have two lists, but you are not really done yet:

All you have to do now, is compare the first letter in the first list

with all the letters in the second list, and put all the letters that

come before down, before putting that letter you use to

compare with all the letters down. You then do the same with

all the other letters in the first list, comparing them with all the

letters in the second list and putting all the letters that come

before them before putting those letters themselves down:

And now for some pseudocode of this lovely algorithm:

Some function definition to help you understand this

pseudocode better:

MergeSort = Actually sorts out the values

SplitList = Splits the list

MergeTwoList = Merges the lists

Function MergeSort(Array)

IF UpperBound(Array) == 0 THEN

RETURN Array

END IF

END

Call SplitList(Array, ArrayRightHalf, ArrayLeftHalf)

ArrayRightHalf = MergeSort(ArrayRightHalf)

ArrayLeftHalf = MergeSort(ArrayLeftHalf)

RETURN MergeTwoList(ArrayRightHalf, ArrayLeftHalf)

End function

Quick Sort

Another way to sort out numbers, let’s work through another

example to see how quick sort is done.

So we want to order our numbers from lowest to the highest:

First we need to set some things, an index and a pivot and they

HAVE to be in the opposite ends. Technically you can choose

any pivot you like but it will just make life harder, here we are

trying to make your life easier

But still, the index HAS to be at the starting number. No

exceptions

Now what you do basically is, since we are sorting our numbers

from lowest to highest, we want to get all of our high numbers

in the right side, and all of the lower ones in the left side.

The left side is before the pivot, the right side is after the pivot

8 is not bigger than 9 so it stayed where it was and we moved

the index, but once the index reached 10, 10 is bigger than 9 so

they swap places. Notice the pivot and the index move with

their numbers when they swap places, when they do the index

ALWAYS moves towards the pivot. (Think of it as the pivot

being the one always getting pushed around, as it does not

change values)

4 is lower than the pivot 9, plus 4 is on the right side where all

the big numbers should be, so 4 is swapped with 9:

Index keeps on moving towards the pivot, 6 is lower than 9 BUT

6 is on the left side, where all the small numbers should be so it

stays there

24 is bigger than 9 and is on the left side where all the small

numbers should be, so it swaps:

16 is bigger than 9 but does not get swapped because is not

the right side, where all the big numbers should be so it stays

there.

Now a point reaches where the pivot and the index meet each

other:

So 9 stays where it is and two separate new lists form, one

containing all the low numbers (8, 4 and 6) and the others one

containing all the high numbers (16, 24 and 10).

So two new lists are formed meaning two new indexes and

pivots are made:

And same process and logic applies, all high numbers on the

right, all the low ones to the left. So 8 is bigger than 6 so it

swaps, then 4 is lower than 6 but it’s on the left where the small

numbers should be so it stays where it is:

16 was bigger than 10 and it’s on the left so it swaps. Then 24 is

bigger than 10 but 24 is on the right side where all the big

numbers should be, so it stays there. But the list is still not in

order.

So once again there is a new list created, therefore there are

new indexes and pivot:

24 is larger than 16 but is on the left side, where all the small

numbers should be, so it swaps with 16:

FINALLY YOU HAVE YOUR ORDERED LIST

In all seriousness I think this is a very shitty way to sort out numbers,

but hey that’s how computers think apparently....

Pseudocode for Binary Search

You need to know the following pseudocode for Binary Search:

LowerBound = 0 (The lowest value of the list)

UpperBound = LengthOfList – 1 (The highest value in the list)

Found = FALSE

WHILE Found == FALSE AND LowerBound<=UpperBound

THEN

MidPoint = ((LowerBound + UpperBound)/2)

IF MidPoint < WantedItem THEN

LowerBound = MidPoint + 1 (Value after MidPoint

becomes the lowest value)

ELSE THEN

UpperBound = MidPoint – 1 (Value before MidPoint

becomes the highest value)

END IF

END WHILE

IF MidPoint == WantedItem THEN

OUTPUT “Wanted item is at”, + MidPoint

ELSE THEN

OUTPUT “Wanted item, not in list”

END IF

Dijkstra’s shortest path

Shit name, shit concept. Although is not hard, still a confusing

concept to get your head around. Come on, you are almost done, just

this topic and one more...

So Dijkstra’s shortest path is as it suggests in the name, it’s

about finding the shortest path within a graph. So let’s work

through an example as with these kind of things, the best way

to understand is through examples:

So, here is our graph. We are trying to find the shortest path

between T and S. You also need this table to keep track of your

paths:

The values in the shortest distances from the start, are all

currently infinitive (Like forever values of millions).

So first of all, we visit the first node and we insert the previous

node in the previous vertex column. In this case, T has a value

of 0 in the shortest distance column because T is our starting

point, so there is no distance. And there are no previous

vertexes either as T is our starting point. So we put nothing

down in the previous vertex column for T, and we mark it as

visited.

Now we work out the distances between T and all the vertexes

connected to T and those are G and C. So in the columns for C

and G we are going to put their distances from the start (T) and

their previous vertexes:

Now what you do is visit the vertex with the lowest distance

from the start, and it has to be a vertex that has not been

visited. Vertex C fits that description so we will visit vertex C and

mark it as visited:

So, what happened was that we worked out the distances

between all the vertexes connected to C which are I, S and G

HOWEVER, since the column it says shortest distance from the

START, we add up the distance values between C and I or S or G

and add it with the distance value between C and T (The

starting point) which gives the values 24 for I and 23 for S. Since

they are lower than the infinitive values, we put them down, but

for G when we add 9 and 8 together it gives us a distance of 17

from the starting point, we already have a value for vertex G

which is 13 for the shortest distance from the starting point and

17 is higher than 13 so we don’t put it down.

Now we visit the next unvisited vertex with the lowest distance

from the start and that is G, same process as described in the

paragraph before applies:

The distance between B and the starting point is an infinitive

value, and 30 is lower than the infinitive value therefore we put

it down, as well as our previous vertex which is G, as that

column was empty before. With S, when we add the distance

between S and G and G and T (Starting point) we get a value of

23 but there is already a 23 in the in the shortest distance from

the start and they are the same, so no need to change the

value. Mark G as visited.

Now again, you visit the next unvisited vertex with the shortest

distance from the starting point and that is S, same processes

apply:

When we get to I, all the vertexes connected to it have already

been visited so we just mark I as visited.

So here is your completed table:

And the shortest distance from T to S should be obvious, it

goes from S to C and then to T:

Remember, you only fill in the previous vertex column if it’s

empty, if it’s already full then don’t change anything. The only

column whose values you should change is the visited column

and the shortest distance from the start column.

A key thing to remember is that, when working out the distance

between a visiting vertex and the vertexes connected to them, if

any of the connected vertexes have already been visited, then

you just ignore them.

A* Algorithm

The only thing I can think of when reading the title of this concept is

me getting that A* in the exams, WE WILL HAVE THAT A* BITCHES...

This is simply an extension of Dijkstra’s algorithm, it involves

this table:

As you can see, the only difference is that there are two extra

columns, h and f = g +h. In a motorway, you will have traffic

jams and all that, so sometimes that needs to be taken into

account, and the h values represent just that, traffic jams or any

other factor which can you know..slow down our short path and

instead feels like our short path is just endless.

How it works is pretty simple, like with Dijkstra’s shortest path,

you work out the distance between the vertexes and the

starting point, if they are lower put them down, if not don’t put

them down. The just add that value with H and that is your

answer.

We are trying to get from T to B, so T is our starting point. And

from this graph is pretty clear which one is our shortest path, B

to S to C and to T

Congratulations, you finished everything in A level Computer Science,

if you have not done the coursework you better get started with it

NOW as trust me it WILL be a pain in the ass.

