

OCR A-Level Computer Science Spec Notes

1.1 The characteristics of contemporary processors, input, output and storage
devices - Summarized

1.1.1 Structure and function of the processor
(a) ALU; Control Unit; Registers

- CPU (Central Processing Unit): A general purpose-processor which completes
instructions using the FDE cycle (Fetch-Decode-Execute).

CPU consists of:
- ALU (Arithmetic Logic Unit):

● Carries out Logical/Arithmetic calculations in the CPU
● Stored in the ACC.
● Acts as a gateway to the processor for easy calculations.

- CU (Control Unit):
● Controls FDE cycles
● Decodes & Executes instructions + Coordinates Data around processor/computer
● Synchronises actions using in-built clock

- Registers : Memory locations inside a computer that temporarily store data/information.
They are faster to access than RAM especially during the FDE cycle

- GPR (General Purpose Registers):
● Temporarily store data than transferring using slower memory.

- PC (Program Counter):
● Stores the address of the next instruction to be processed

- ACC (Accumulator):
● Temporarily stores ALU calculations & deals with I/O data

- MAR (Memory Address Register):
● Temporarily stores address of the next instruction/data from main memory

- MDR (Memory Data Register):
● Contains the instructions of the memory location address specified in the

MAR. Copies data/instructions to CIR
- CIR (Current Instruction Register):

● Hold the most recent instruction for decoding/execution by CU
- Buses : Parallel set of communication wires which carry instructions/data to/from

registers to processors. There are 3 different buses in the CPU:
- Data Bus : Carries data/instructions around the system (CPU <-> Register)
- Address Bus: Carries information on the location of the data (MAR -> Main

Memory)
- Control Bus : Transmits control signals from CPU to sync rest of processor

(b) Fetch-Decode-Execute cycle
Fetch

● PC instruction fetched & stored in Main memory to processor
● PC passess address location to MAR through address bus
● PC is incremented in cycle & Fetch signal is sent to control bus.
● Contents of memory location is sent from memory to processor via data bus which is then

stored on MDR
● Contents of MDR/ACC sent to ALU & calculation sent to ACC

Decode
● Load instruction from address in MAR & send to MDR
● Instruction copied from MDR -> CIR
● Instruction decoded into opcode/operand by CU in CIR

Execute
● The appropriate instruction opcode is carried out on the operand by the processor.

(c) CPU performance (clock speed, number of cores, cache)
CPU performance can be measured in different ways

● Clock Speed
- Clock controls the process of executing instructions/fetching data
- Can be ‘overclocked’ = More cycles per second
- Heat Sink: Fan to cool down overheating CPU

● Number of Cores
- Multiple cores = Speed up smaller problems
- Multi Tasking = Different cores run different apps / All work on one app

● GPU (Graphics Processing Unit)
- Designed to handle graphics/video faster than a CPU
- CPU directly sends Graphics related tasks to GPU

● Cache
- Small memory which runs much faster than main memory (RAM)
- By anticipating the data/instructions that are likely to be regularly accessed , the

overall speed at which the Processor operates can be increased.
- More space for data/instructions in cache memory
- RAM needs to be accessed less frequently as accessing cache is quicker.
- More expensive than RAM

(d) Pipelining

- Allow one instructions to be decoded/executed while the previous one is
fetched/decoded

- Jump instructions can’t be used with pipelining as the wrong instruction can be
fetched/decoded which causes the pipeline to ‘flush’ .

(e) Von Neumann, Harvard, contemporary architecture
Computers are built off from mainly 2 architectures:Von-Neumann/Harvard Architecture:

Von Neumann Architecture:

● Single processor CU manages program control.
● Uses FDE cycle to execute one instruction at a time in a linear sequence.
● Program and data stored together in same memory format (Problem due to overwriting of

data)
● Simple OS and easy to program
● Von Neumann Bottleneck: CPU has to wait for data transfer as it’s much faster

Harvard Architecture:
● Data/instructions are stored in separate memory units with separate buses (Complex)
● So while data is being written to or read from the data memory, the next instruction can

be read from the instruction memory (Von Neumann more cost effective)
Contemporary Processor Architecture:

● Modern high-performance CPU chips incorporate aspects of both architectures.

1.1.2 Types of processor
(a) CISC vs RISC processors

Reduced instruction Set Computer (RISC) Complex instruction Set Computer (CISC)
- Simple processor design - Complicated processor design
- Simpler Instructions used - Complex Instructions used
- One machine cycle per instruction - Each instruction (Many cycles)
- Allows pipelining - No pipelining
- Shorter instruction set - Longer instruction set
- Requires More RAM - Requires Less RAM
- Simple circuitry is cheaper - Integrated circuitry is more expensive
- Programs run faster due to simple instructions - Programs run more slowly due to

 complicated circuit
- Limited Instructions available - Many Instructions available
- An instruction performs a simple task so - An instruction can do complex tasks
complex tasks can only be performed so no need to combine many instructions
by combining multiple instructions

(b) GPUs

- Specifically designed for enhancing graphics
- Have inbuilt circuitry & instruction set for graphics based calculations
- Large number of cores = run highly parallelizable problem s
- Perform on-screen graphics transformations quickly
- Tackles problems in: Science/Engineering, data mining, audio processing, password

beaking, machine learning

Co-Processor : Extra processor to supplement functions of primary processor (CPU)

(c) Multicore and Parallel systems

Multicore processors

- More than one processor incorporated into one chip
- Focuses efforts of multiple CPUs into 1 task
- Hard to program code to decompose problems efficiently for multicore processing

Parallel Systems
- A computer which does multiple computations simultaneously to solve a problem which

takes less time to do one job
- Parallel processing isn’t suited to all to problems. Most problems are only partially

parallelizable .
- Allows faster processing and speeds up arithmetic processes as multiple instructions are

processed at the same time and complex tasks are performed efficiently .
- Complex OS & specific code has to be written for maximum efficiency of parallel

processing.
Different approaches to Parallel processing:

- SIMD (Single Instruction Multiple Data): The same instruction operates simultaneously on
multiple data locations

- MIMD (Multiple Instructions Multiple Data): Different instructions operate concurrently
on different data locations

1.1.3 Input, output and storage
(a) Applying different input, output, storage devices to a problem
Input Devices: Peripheral devices which pass data onto the computer and allow the user to
communicate with the computer.
Output Devices: Peripheral devices used to report the results of processing from a computer to
the user and allow the computer to communicate with the user.

Input Devices Examples: Keyboard, Mouse, Microphone, Scanner
Output Devices Examples: Printer, Speaker, Monitor, Actuators

Storage Devices

- A secondary storage device is the physical hardware that carries out the storage action.

When getting a storage device, the following needs to be considered:

● Cost of media (DVD disk vs an external hard disk)
● Cost per GB (Important for backup of data)
● Speed (Read - Write speed)
● Capacity (How much data it can store)
● Potability (How heavy/light the device is)
● Durability (How long can it last)

Archive : transfer (data) to a less frequently used storage medium such as magnetic tape.
Back-up : a copy of a file or other item of data made in case the original is lost or damaged.

(b) Magnetic, flash and optical storage devices

- Peripheral devices used to permanently store data when Power OFF
- 3 Main storage categories: Magnetic/Flash/Optical

Magnetic Storage Flash Storage Optical Storage

- Use of magnetisable
material to read
magnetic patterns of
platters that run
mechanically at high
speeds

- Data is stored on memory chips
- Can have contents

overwritten/erased when
electrical charge is applied

- Using a laser which
reads the disc by
looking at its
reflection

- High Capacity at Low
Cost

- No moving parts = less power
- High read/write speeds
- Less Space & Run silently

- Cheap & resilient

- Noisy & Susceptible
to damage if moving
too quickly

- Expensive form of storage - Unreadable if there
are scratches

- E.g HDD/Zip
Drives/Magnetic
Tape

- E.g SSD/Flash Drives(USB)/Flash
memory Cards

- E.g
CDs/DVDs/Blu-Ray
discs

(c) RAM and ROM

RAM (Random Access Memory) ROM (Read only Memory)

- User files/applications software/OS
temporarily stored

- Small memory which can only be READ
into

- Faster read/write speed than
secondary storage media

- Stores BIOS bootstrap program . Stored
here so it isn’t deleted

- Volatile : Loses contents when Power
OFF

- Immediately present when computer is
turned on

- Data can be written over by allowing
user to alter saved files in current use

- Non Volatile : Contents not lost when
Power OFF

- Large & reduces buffering - Memory contents can’t be
altered/maliciously changed

(d) Virtual storage

- Combination of multiple storage devices into 1 virtual storage device
- Remote Storage/Software & Accessible anywhere
- If one storage device fails, can be replaced with inexpensive storage device
- Easy for administrator to monitor one storage device rather than multiple
- Complicated system so requirements to run are high

OCR A-Level Computer Science Spec Notes

1.2 Software and software development
1.2.1 Systems Software
(a) Function and purpose of operating systems
Operating System: Low-level software which controls a computer’s basic functions such as:

- Controls communication to/from devices using protocols
- Manage Software : Loading/Uploading software to memory
- Provide Security : Username/Password control
- Handles code translations of: compilers/ interpreters/ assemblers to translate HLL/LLL

into machine code.
- Provide a user interface (UI) / HCI : So user can interact with the computer e.g Command

Line Interface (CMD/CLI)
- Utility software used to carry out maintenance tasks to maintain hardware
- Uses job scheduling to provide fair access to processor according to set rules.

(b) Memory management (paging, segmentation, virtual memory)

- Memory is limited so it needs to be managed.
- This is achieved by providing each process with a segment of the total memory
- This is so there is no corruption of data during memory transfer
- Ensures programs can’t access each other’s memory unless legitimately required to.
- Provides security to OS
- Allows programs larger than main memory to run
- Allows s eparate processes to run while managing memory

Paging Segmentation Virtual Memory

- Splits memory into
fixed-size chunks
made to fit the memory

- Splits memory into
variable sized logical
divisions which can
hold whole programs

- When memory
inefficient = allocated
secondary storage
memory used to allow
programs to run

- Are assigned to memory when needed to allow
programs to run despite insufficient memory.

- Uses backing store as
additional memory for
temporary storage

- Are stored on a backing store disk to swap parts of
programs used for virtual memory .

- Swap pages to/from
RAM (paging)

- Allow programs to be stored in memory
non-contiguously .

- Hold part of program
not currently in use

- May cause disk threshing when more time spent swapping pages from memory to disk
than processing so computer may ‘hang’.

(c) Interrupts (function of ISRs)
Interrupt : A signal from a device alerting the CPU for its immediate attention

- Obtain processor time via generating a signal/message to processor stating they need to
be serviced immediately

- Breaks current execution which is occuring in the processor
- Interrupts have different priorities
- Start when current FDE cycle is complete to ensure max efficiency of processor
- Can only interrupt a low-priority task to avoid delays/loss of data

Interrupt Service Routine (ISR)
- Check IR to compare interrupt priority compared to task
- If lower/equal priority = current task continues
- If higher priority = CPU completes FDE cycle
- Contents of registers stored in LIFO stack
- Location of ISR is loaded by loading the relevant value into the PC
- When ISR is complete

● Flags sent to inactive state
● Further interrupts checked & serviced if necessary
● Contents of stack popped and loaded back onto registers to resume processing

(d) Scheduling
Scheduler: Manages the amount of time allocated to different processes in the CPU. It has
several purposes:

- Maximise # of jobs completed in set time
- Maximise # of users receiving fast response times with minimal delay
- Ensure all jobs are processed fairly so long jobs don’t monopolise the processor
- Obtain the most efficient use of processor time and utilise resources dependent upon

priorities
- Prevent process starvation from applications in deadlock failing to run

Scheduling Algorithms

Scheduling
Algorithm

Process of
Scheduling

Advantages Disadvantages

Round
Robin

- All jobs given
equal amount
of processor
time. If not
completed =
sent to back
of queue and
next job is
given time

- Simple to
implement as
jobs are
relatively the
same size

- The importance of the
process is not taken into
account

- Some jobs require multiple
processing tuns making
round robin inefficient for
longer jobs

First come
first

served

- Jobs
completed in
order of
arrival. Other

-Simple algorithm
which starts a job as
soon as it reaches the
front of the queue

- Once one job starts it
prevents other jobs from
being processed

- Long jobs take longer

processes
wait in a
queue

which decreases efficiency
of processor

- +Round Robin
disadvantages

Shortest
Job first

- Jobs ordered
by how much
time each job
takes to
complete

- Ensures max #
of jobs
completed

- Minimises
average time to
process a task

- When a longer job is
processed, it would be
interrupted when a
shorter job arrives in the
queue (Could never
complete job is short jobs
keep coming)

- +Round Robin
disadvantages

Shortest
remaining

time

- Orders jobs
by how much
time they
have
remaining till
completion

- Allows short
processes to be
handles very
quickly

- Ensures max #
of jobs
completed

- +Round Robin
disadvantages

Multilevel
Feedback

queues

- This uses a
number of
queues. Each
of these
queues has a
different
priority.

- Enures higher
priority
processes run
on time

- Complex to implement
- Not efficient if jobs have

similar priorities

(e) Distributed, embedded, multi-tasking, multi-user, real time OS
There are different types of operating systems:

- Multi-tasking: Allows more than one program to run simultaneously (Windows/Linux)
- Multi-user: Allows multiple users to operate one powerful computer using terminals
- Embedded: Handles a specific task on specific hardware (limited resources) (ATM)
- Distributed: Allows multiple computers (cluster) to work simultaneously on a problem as

a single system. Shares data to reduce bottlenecks
- Real-time: The data is processed immediately and a response is given within a guaranteed

time frame (Planes)
- Batch : The task of doing the same job over and over again (With different inputs/outputs)

(f) BIOS
Basic Input/Output system (BIOS) allows the computer to be ‘booted up’ when switched on

- When switched on, PC points processor to BIOS memory to start up
- Check to see if computer is functional/memory installed/processor functional
- Stored in flash memory for modification

(g) Device drivers

- Normally provided with a peripheral device which contains instructions to enable the
peripheral and OS to communicate and configure hardware.

- Enables multiple versions of OS to communicate with devices

(h) Virtual machines

- Theoretical/ Generalised computer where a translator is available when programs are
run

- Can run OS on a software implementation
- Uses an interpreter to run intermediate code (Slower than compiler)

Intermediate Code
- Partially translated/simplified code (high/machine code)
- Can be produced by compiler (if error free)
- Protects source code from being copied to keep intellectual property
- Platform independent = improving portability
- The program runs more slowly than executable code as it needs to be translated each

time it is run by additional software.

1.2.2 Applications Generation
(a) Nature of applications
Software : Set of programs/instructions/code that runs on computers which makes hardware
work . (Applications/Utilities software)

Applications Software:

- Allows user/hardware to carry out tasks
- E.g Word processor/spreadsheet packages/photo-editing suites/web browsers

(b) Utilities
Utilities Software:

- Small piece of systems software with one purpose usually linked with maintenance
- E.g Anti-Virus/Disk defragmentation/File managers

(c) Open source vs closed source

Open Source Closed Source

- Free for others to examine/recompile - Sold as license to use the software

- Users can create amended versions of
program (Access to source code)

- Company/Developer holds copyright
so users don’t have access to source
code

- No helpline since no commercial
organisation

- Helpline/support available from
company + regular updates + large user
base

- E.g Linux/Firefox/Libre Office - E.g MAC OS,iWork,Safari

(d) Translators: Interpreters, compilers, assemblers
Translators: Converts code from one language to another (Between HLL,LLL,source
code,object,intermediate, executable,machine code). There are 3 types of translators:

- Interpreters
● Interprets & runs HLL code by converting it to machine code & runs it before

reading next line
● Reports one error at a time (stops to show location of error)
● Must be present each time the program is run so program runs slower due to

translation
● Source code (visible & changeable)

- Compilers
● Converts HHL source code to machine code
● Translates whole program as a unit + creates executable program when completed
● Gives list of errors at end of compilation
● Not readable by humans to protect intellectual property
● Machine dependent & architecture specific (Different code needed)
● Compiler is no longer needed when executable code is used
● Produces intermediate code for virtual machines

- Assemblers
● Uses low-level source code to translate assembly -> machine code
● Reserves storage for instructions & data
● One assembly language instruction is converted into one machine code

instruction
● Many lines needed for the simplest of tasks

(e) Stages of compilation
Compilation has several stages:

- Lexical Analysis
● Comments/Whitespace removed from program
● Remaining code turns into a series of tokens (sequences of characters)
● Symbol table is created to keep track of variables/subroutines

- Syntax Analysis
● Abstract syntax tree is built from tokens produced in lexical analysis
● If any tokens break rules of language = Syntax errors generated

- Code generation
● Abstract tree code is converted to object code
● Object code = machine code before ‘linker’ is run

- Code optimization
● Tweaks code to run as smoothly as possible

(f) Linkers, loaders, libraries
Linker: Combines compiled code with library code into a single executable file
Loader : Part of OS & responsible for loading a program into memory
Libraries: Pre-written bodies of code that can be used by programmers

- Save time/cover complex areas/different languages can be used together

1.2.3 Software Development
(a) Waterfall/Agile methodologies/Extreme programming/Spiral/RAD
Developing Software project:

Step Process

Feasibili
ty Study

- To carry out enquiries on whether the project is possible and solvable. Plans can
be revised if there are problems

- Analysts consider parameters such as:
● Technical feasibility – Is there hardware/software available to implement

the solution ?
● Economic feasibility/cost benefit analysis – Is the proposed solution

possible to run economically?
● Social feasibility – Is the effect on the humans involved too extreme to be

socially acceptable/environmentally sound?
● Effect on company’s practices and workforce – Is there enough

operational skill in the workforce to be capable of running the new
system ?

● What is the expected effect on the customer? - If customer not
impressed then there may not be a point .

● Legal/ethical feasibility – Can the proposed system solve the problem
within the law?

● Time available – Is the time scale acceptable for the proposed system to
be possible?

Require
ments
Specifica
tion

- The specification document is developed between client/software developers
creates an understanding of a problem and solutions can be derived

- It states everything the new system is going to do including:
● Input requirements
● Output requirements
● Processing requirements
● Clients agreement to requirements
● Hardware requirements
● Software requirements

Testing This process makes sure the project runs smoothly. There are 4 types of testing:
- Black-Box Testing: Tests the functionality of the program without looking into

the internal structures/working. Only input/output
- White-Box Testing: Tests the structure & workings of the application as

opposed to its functionality
- Alpha Testing: Where testers in the organisation test & identify all possible

bugs/issues before the product is released
- Beta Testing: Test the program in a ‘real environment ’ with limited end-users so

they provide feedback on the functionality of the program.

Docume
ntation
written
through
out the
process

- Requirements specification: Details exactly what the system will do
- Design: Includes algorithms/screen layouts/data storage descriptions
- Technical Documentation: Details how the system works for future

maintenance E.g Descriptions of code/modules & functionality
- User Documentation: Tell sythe user exactly how to operate the system E.g

Tutorials/Error messages descriptions/troubleshooting guide

The waterfall lifecycle
- Series of linear stages presented in order (Can only go to next stage after previous is

done)
- Possible to back if necessary
- List of stages: Feasibility Study, Investigation/Requirements Elicitation, Analysis,

Design, Implementation/Coding, Testing, Installation, Documentation, Evaluation,
Maintenance

Agile development methodologies
- A group of methodologies to cope with changing requirements
- Software produced in a iterative manner (Build on previous versions)

Extreme Programming (XP)
- Example of a Agile Development Methodology (Iterative in nature)
- Customer is part of the team to help decide ‘users stories’ (Requirements/Tested)
- Each iteration creates a version of the program with code good enough to be the final

product
- Pair programming: One writes/one analyse = switch over

The spiral model
- Designed to manage risk. 4 stages:

● Determine Objectives: Determine objectives according to biggest risks
● Identify/Resolve Risks: Risks identified & alternate solutions considered. Project

stopped = Risk too high
● Development & Testing : This is where the program is developed/tested
● Plan next iteration : Determines what happens at next iteration

Rapid Application Development (RAD)
- Involves use of prototypes
- Prototype shown to user & feedback given to amend prototype until user is happy
- Constantly developed & reviewed by user until user = satisfied

(b) Merits and drawback of different methodologies

Waterfall Lifecycle

Advantages Disadvantages

- Suited to large scale static projects - If changes occur, hard to do = loss in
time/money

- Focuses on early stage development - Inflexible/limiting to change
requirements

- Focuses on end user (Can be involved
in different parts of project)

- Dependent on ‘ clear requirements’ so
there is little ‘ splash-back’

- Progress of development easily
measurable

- Produces excessive documentation =
time consuming

- Generally more progress forward than
backward

- Missing system components tend to be
found during design/development

- Orderly sequence guarantees quality - Performance can’t be tested until fully

written documents completed

Agile development methodologies (Extreme Programming)

Advantages Disadvantages

- New requirements adapted
throughout

- Client has to be part of team which
might be inconvenient for them

- Lack of documents due to emphasis on
coding = not suitable for larger
projects

- End-User is integral throughput

- Pair programming allows code to be
efficient/robust/well written

- Code is created quickly and modules
available for user as they are done

The spiral model

Advantages Disadvantages

- Large amount of risk analysis
significantly reduces risk as risks are
fixed in early development stages

- High skilled team needed for risk
analysis

- Software prototype created early and
updated in every iteration

- Development costs high due to
number of prototypes created &
increased customer collaboration

Rapid Application Development (RAD)

Advantages Disadvantages

- End user can see a working prototype
early in project

- Emphasis on speed & development
affects overall system quality

- End user more involved & can change
requirements so clear direction on
where the program is heading

- Potential for inconsistent designs &
lack of detail in documentation

- Overall development time is quicker
reducing costs

- Not suitable for safety critical systems

- Concentration on essential elements
for fast completion

1.2.4 Types of Programming Language
(a) Need for variety of programming paradigms
Paradigms = Methods

Many types of programming languages which are high/low level languages:

- High-level languages
● Uses language more similar to human language (English + Mathematical Expressions)
● Can be converted to machine code

- Low-level languages
● Directly linked to architecture of computer
● Machine/Assembly code are low level

(b) Procedural languages

- High level, 3rd gen, imperative languages
- Uses sequences/selection/iteration
- Program gives a series of instructions line by line on what/how to so an operation
- Statements are called functions/procedures
- Breaks down the solution into subroutine blocks which are rebuilt and combined to form

the program
- Tasks completed in a specific way
- Logic of program = series of procedure calls
- E.g VB.NET/Python/C

(c) Assembly language (LMC)
 Assembly code:

- Machine oriented language
- Closely related to computer architecture
- Uses mnemonics for instructions
- Translated by a assembler
- Easier to write than machine code , but more difficult than HLL.
- Descriptive names for data stores
- Each instruction is translated into 1 machine code instruction.

LMC: fictional processor designed to illustrate the principles of how processors and assembly
code work.

LMC instruction set:

Mnemonic Function Example
Instruction

Explanation

ADD Add ADD n Add the contents of n to the ACC

SUB Subtract SUB n Subtract the contents of n from the ACC

STA Store STA n

Store the number n

LDA Load LDA n

Load the contents of n into the ACC

BRA Branch
always

BRA number Unconditional jump to number label

BRZ Branch if zero BRZ number

Jump to number label if ACC contents is
zero

BRP Branch if
positive

BRP number

Jump to number label if ACC contents is
positive

INP Input INP

Prompt for a number to be input

OUT Output OUT Outputs the contents of the ACC

HLT End
Program

HLT Stops program execution

DAT Data Location n DAT 10 Creates data location n and stores the
number 10 in it

(d) Modes of memory addressing
Different ways of accessing memory in low level languages:

- Direct addressing
● Simplest & most common type of addressing
● Address in the memory where the value actually is that should be used
● “Instruction ADD 10 means go find data value in data location ‘10’ and add that value

to the accumulator’
● Used in assembly language

- Indirect addressing

● The operand is the address of the data to be used by the operator
● Useful for larger memories
● E.g. in ADD 23, if address 23 stores 45, address 45 holds the number to be used.

- Indexed addressing

● Modifies the address given by adding the number from the Index Register to the
address in the instruction.

● Allows efficient access to a range of memory locations by incrementing the value in
the IR e.g. used to access an array

● E.g Adding data value 5 to data location 20, 6 is at 21 etc
● Final address = base address + index

- Immediate addressing
● Used in assembly language
● Memory remains as constant as it doesn't change (address field = constant)
● Data in the operand is the value to be used by the operator e.g. ADD 45 adds the

data value stored in data location ‘45’ to the value in the ACC.

(e) Object-oriented languages (OOP)

- Programming paradigm which enables programs to solve problems by implementing
components such as objects to work together to create a solution

- Most programs have OOP in them (Java/C++/C#)
- Components of OOP include:

● Classes : Template used to define an object. Specifies what methods/attributes the
object should have.

● Object: Self-contained instance of a class based off real world entities made from
attributes and methods.

● Methods: Subroutines which forms the actions an object can carry out
● Attributes: Value stored in variable associated with an object.
● Constructor: Method describes how an object is created.

Features of OOP

● Encapsulation
- Process of hiding data within objects to keep attributes private
- Prevents objects being amended in unintended ways
- Private attributes can only be amended by public methods = maintains data

integrity
● Inheritance

- When a class inherits it’s parents attributes & methods
- This class might have it’s own methods/attributes which could override

methods of the parent class (unless superclass is used)
- The class can be used as a base for different objects to save time

● Polymorphism
- Meaning “Many Forms”
- Applies same method to different objects = treated in same way
- Code written is able to handle different objects in the same way to reduce

the volume produced

OCR A-Level Computer Science Spec Notes
1.3 Exchanging Data

1.3.1 Compression, Encryption and Hashing
(a) Lossy vs Lossless compression
Compression - The reduction of file sizes to:

- Reduce download times
- Make best use of bandwidth
- Reduce file storage requirements

There are 2 types of compression:
● Lossy

- Some data stripped out to reduce file size
- Information not recoverable hence deleted since it has least importance
- Typically used for I mages/Videos/Music files. Data removed is not noticeable by

humans
- Common lossy formats: JPEG/MP3/MPEG

● Lossless
- Retains all data by encoding it efficiently
- The original file can be regenerated
- Common lossless formats : ZIP/GIF/PNG

(b) Run length encoding and dictionary coding
 There are 2 types of encoding:

● Run Length Encoding
- Stores redundant data (pixels/words/bits) into groupings of bits
- Indexed and stored on a dictionary/table + # of occurrences
- Used in TIFF/BMP files

● Dictionary Encoding
- Compression algorithm which uses a known dictionary/own dictionary to encode

data.
- File consists of dictionary + sequence of occurrences
- Substitutes entries for unique code e.g (function = F_N)
- Used for ZIP/GIF/PNG files

(c) Symmetric and asymmetric encryption
Encryption:

- The process of scrambling data that the only way to read it is to decrypt it
- Uses encryption keys (long random numbers) to encrypt/decrypt messages
- Public key = available to all / Private key = Available to owner only
- Long process to encrypt & decrypt

There are 2 types of encryption:

● Symmetric Encryption
- Same key used to encrypt/decrypt
- Requires both parties to have copy of key
- Can’t be transferred over internet = Easy to decrypt

- Stronger than asymmetric (Same length)
● Asymmetric Encryption

- Different keys to encrypt/decrypt = More secure
- Public key = encrypt / Private key = decrypt
- Example: TLS (Transport Layer Security) uses symmetric & asymmetric

(d) Different uses of hashing
Hashing:

- Used to produce/check passwords
- Stores data in abbreviated form e.g 123456 -> 456
- Difficult to regenerate hash value -> original value
- Vulnerable to brute-force attacks
- Low chance of collision (Different inputs = same output) = ↓ risk of files being the same
- Easy to check – the login attempt is hashed again

1.3.2 Databases
(a) Flat file and relational databases
Databases : Structured & Persistent stores of data for ease of processing

- Allow data to be: Retrieved quickly/updated easily/filtered for different views
Flat file Databases

- Simple data structures which are easy to maintain (limited data storage)
- Limited use due to redundant/inconsistent data
- No specialist knowledge to operate
- Harder to update & data format is difficult to change

Relational Databases
- Based on linked tables (relations)
- Based on entities (Rows & Columns)
- Each row (tuple) in a table is equivalent to a record and is constructed in the same way.
- Each column (attribute) is equivalent to a field and must have just one data type.
- Improves data consistency & integrity
- Easier to change data format & update records
- Improves levels of security so easier to access data
- Reduces data redundancy to avoid wasting storage

Primary Key (PK)

- Is a unique identifier in a table used to define each record.
Foreign Key (FK)

- PK in one table is used as an attribute or FK in another to provide links or relationships
between tables.

- Represents a (one to many) relationship where the FK is at the “many ” end of the
relationship to avoid data duplication .

- This allows relevant data to be extracted from different tables.

Secondary Key (SK)
- An attribute that allows a group of records in a table to be sorted and searched

differently from the PK and data to be accessed in a different order .

Entity Relationships

- Used to plan RDB
- Diagrams to show relation
- Helpful in reducing redundancy

One-One Relationship

- Not suitable for relationship tables

One-Many Relationship

- Used in well designed RBS

Many-Many Relationship

- Leads to data redundancy

Indexing

- The PK is normally indexed for quick access.
- The SK is an alternative index allowing for faster searches based on different attributes.
- The index takes up extra space in the database.
- When a data table is changed , the indexes have to be rebuilt.

Serial files

- Are relatively short and simple files.
- Data records are stored chronologically i.e. in the order in which they are entered.
- New data is always appended to the existing records at the end of the file.
- To access a record , you search from the first item and read each preceding item.
- Easy to implement .
- Adding new records is easy.
- Searching is easy but slow .

Sequential files

- Are serial files where the data in the file is ordered logically according to a key field in
the record.

Indexed sequential files
- Records are sorted according to a PK
- A separate index is kept that allows groups or blocks of records to be accessed directly

and quickly
- New records need to be inserted in the correct position and the index has to be

maintained and updated to be kept in sync with the data
- Is more difficult the manage but accessing individual files is much faster
- More space efficient
- More suited to large files

Database Management System (DBMS)
- Is software that creates, maintains and handles the complexities of managing a

database .
- May provide UI.
- May use SQL to communicate with other programs.
- Provides different views of the data for different users.
- Provides security features.
- Finds , adds and updates data.
- Maintains indexes .
- Enforces referential integrity and data integrity rules.
- Manages access rights.
- Provides the means to create the database structures: queries, views, tables, interfaces

and outputs.
Queries

- Isolate and display a subset of data .
- QBE : query by example.

(b) Methods of capturing, selecting, managing, exchanging data

There are multiple ways to capture/select/manage/exchange data based on the scenario and
what needs to be obtained. For example, a hotel would want the guests information so they can
process payments.

(c) Normalisation to 3NF
Normalisation: There are 3 stages to normalisation:

- 1NF
● Separates multiple items/ sets of data in each row to remove duplicate values

- 2NF
● Removes data that occurs on multiple rows & puts data into new table
● Creates relationship links between tables as necessary by repeated fields

- 3NF
● Removes fields not directly related to the primary key to their own linked table so

every value left depends on the key

(d) SQL: Structured Query Language

SQL Command Explanation & Example

CREATE TABLE Creates an Empty Table:
Create Table_Name (
 column1 datatype,
 column2 datatype,
 column3 datatype,
)

DROP Remove database components (ALTER TABLE can be used to delete
column):
ALTER TABLE green DROP COLUMN name;

INSERT Adds values into records in tables:
INSERT INTO example(name, dob) VALUES

DELETE

Deletes data from table_name:
DELETE FROM “example” WHERE

SELECT Lists the field name to be displayed:
SELECT “Name”

WHERE Lists the search criteria for the field value:
WHERE “Name” = ‘Fred’

AND Works when both expressions are true:
“Name” = ‘Cox’ AND “Order” < 3

FROM Lists the table the data comes from::
FROM “tblCustomer”

(e) Referential integrity

- Transactions should maintain referential integrity .
- This means keeping a database in a consistent state so changes to data in one table must

take into account data in linked tables
- Enforced by DBMS .

 (f) Transaction processing (ACID), record locking and redundancy
ACID rules protect integrity of database:

● Atomicity: A change is either performed or not. Half finished changes not saved.
● Consistency: Any change must retain the overall state of database
● Isolation: A transaction must not be interrupted by another
● Durability: Changes must be written to storage in order to preserve them

Record locking

- Preventing simultaneous access to objects in databases to prevent losses in updates or
data inconsistencies

- A record is locked when a user retrieves it from editing/updating
- Anyone else trying to access record is denied access until record is completed/cancelled

Data Redundancy
- Is unnecessary repetition of data that leads to inconsistencies
- Data should have redundancy so if part of a database is lost it should be recoverable from

elsewhere
- Redundancy can be provided by RAID setup or mirroring servers.

1.3.3 Networks
(a) Characteristics of a networks, importance of protocols/standards
Network : interconnected set of devices
Frame : A unit of data sent on a network

Private Networks

Advantages Disadvantages

- Security (Control of access) - Specialist staff/security/backups
needed

- Confidence of availability

Network Topologies: the layout of a network
Different types of Network Topologies

- Bus
● Nodes attached to single backbone = vulnerable to

changes
● Prone to data collisions
● Uncommon now

- Ring

● Nodes attached to exactly 2 other nodes
● Data sent in 1 direction to avoid collisions
● Easily disrupted

- Star

● Most networks are star layouts
● Resilient
● Speratrate link from each node to switch/hub

Standards/protocols- Set of rules relating to the communication of devices & data transmitted
between them:

- Examples: TCP/IP stack

Open Systems Interconnection (OSI) model
- An openly available (non-proprietary) network model.

7 layers in the OSI model:
● 7 – Application : collecting and delivering data in the real world.
● 6 – Presentation : data conversions.
● 5 – Session : manages connections.
● 4 – Transport : packetizing and checking.
● 3 – Network : transmission of packets, routing.
● 2 – Data Link : access control, error detection and correction.
● 1 – Physical: network devices and media.

(b) The internet structure

● The TCP/IP Stack:
- Suite of protocols cover data formatting, addressing, routing and receiving .

Equivalent to layers 7,4,3,2 of OSI model
4 layers of abstraction

Layer Purpose

Application (7) Capturing/delivering data & packaging

Transport (4) Establishment/termination of connections via routers

Network (3) Provides transmission between different networks. Concerned with IP
addressing and direction of datagrams.

Link (2) Passes data onto physical network (Copper wire/optical fibre/wireless)

● (Domain Name System) DNS:
- Hierarchical system for naming resources on a network
- Human readable equivalent to IP address (e.g www.google.co.uk instead of

64.256.201.765)
- Domain names translates URLs to IP addresses
- If server can’t resolve it passes request recursively to another server which sends

IP address to browser so it can retrieve website hosted from server.
● Protocol layering

- Form of abstraction
- Divides complex system into component parts of functionality
- Gradually allows work to be completed & allows efficient problem solving
- Each layer communicates only with adjacent layers

Layers of abstraction

Layer Purpose

Application (7) The hardware that provides the connections.

Network (3) Concerned with routes from sender to recipient.

Physical (1) Hardware that provides the connections

http://www.google.co.uk/

● Network Types (WAN/LAN etc)

- Local Area Network (LAN)
● Confined to one location (school/business)
● Infrastructure maintained by organisations that owns it

- Wide Area Network (WAN)
● Covers a large geographical area
● Makes use of communication providers (BT,Virgin)
● Internet is a WAN but special case (multiplicity of users)

● Packet and circuit switching

Packet Switching Circuit Switching

- Connectionless node 3 Stages:
- connection establishment
- data transmission
- connection termination.

- Divides message into data units called
packets

- Exclusive dedicated channel which
physically connects devices together

- Sent across the most efficient route
(Not predetermined)

- Suitable for intensive data transfer

- At each node = destination read = most
convenient route taken

- Packets remain in order but
reassembled at destination

- Packets arrive out of order (reordered
at destination)

- All packets go on same route in order

- Only as fast as slowest packet - Sets up route between 2 computers for
duration of message

- Errors resubmitted if any occur - Ties up large areas of network so no
other data can use any part of the
circuit until the transmission is
complete.

- Error checking promotes successful
transmission.

(c) Network security
Authentication

- Protects users using a username & password
- As networks are more easily hacked into, new security systems implemented by using:

● Multiple credentials /smart cards/ biometric information (fingerprints/iris
scans)

Firewalls
- Various combinations of hardware/software that isolate a network from the outside

world
- Configurable to deny access to certain addresses/data

Proxies
- Computers interposed between networks & remote resource
- Control input/output from a network

Encryption
- Most traffic is made unintelligible to unauthorised individuals
- Key is needed for sender to encrypt and receiver to decrypt
- Bigger the key = more encryption
- Asymmetric key encryption (Public/Private key)

(d) Network hardware
Network Interface Card/Controller

- Generates/Receives electrical signals
- Works at the physical/data link layers

Router
- Device to connect networks
- Receives/Forwards data packets
- Directs packets to next device (Uses table/algorithm to decide route)

MAC address
- 48 bit identifier
- Permanently added to device by manufacturer
- Human readable group of 6 bytes

Switches
- Devices to connect to other devices on networks
- Packet switching to send data to specific destinations (Using hardware addresses)
- Operates at Lvl ⅔ of OSI mode l

Hubs
- Connects nodes together by broadcasting a signal to all possible destinations
- Correct destination accepts signal

Wireless Access Points
- Usually connected to a router
- Data link layer
- Used to connect devices to Wifi

(e) Client-server and peer to peer
Client server

- High end computers act as servers
- Client computer requests services from server
- Services provided: File storage/access, printing, internet access, security features (login)
- Less complex = more accessible
- Computers don't have to be powerful/expensive
- Servers upgraded to fix security issues/provide more features

Peer-Peer Server

- All computers = equal statu s
- Computers can act as client &/ server

- Useful on internet so traffic can avoid servers
- Cheaper as its private so no expensive hardware/bandwidth needed
- More likely to be fault tolerant

1.3.4 Web Technologies
(a) HTML, CSS, JavaScript
World Wide Web (WWW)

- Collection of billions of web pages
- Written in HTML (have hyperlinks)
- Tags to indicate how text is to be handled.
- Assets: Images/Videos/Forms/Applets

Browsers
- Software that renders HTML pages
- Find web resources by accepting URLs and following links
- Find resources on private networks
- Browser examples: Chrome/Safari/Opera/IE/Firefox

Standards: Set of guidelines used universally so all computers can access the same resources.

Examples of standards

● HTML (Hyper Text Markup Language)
- Create web pages & elements
- Has tags : Mark out elements on page to show browser how to process element
- Links: redirects user from current page to page referred by link

● CSS (Cascading Style Sheets)
- Determines how tags affect objects
- Used to standardise an appearance of a webpage
- Changes made can affect whole site instead of one page
- Content and formatting are kept separate
- Simpler HTML used as CSS can be used in multiple files
- Adjustable for different devices

● JavaScript
- Programing language which runs on browsers & controls elements
- Embedded into HTML with <script> tags to add functionality such as:

● Validation/animation/Newer content
- Used on client side = less strain on server & server side as it can be amended
- Can run on any browser (normally interpreted)

(b) Search engine indexing
Search Engines : Web based software utilities that enable users to find resources on the web

- Builds indexes
- Uses algorithms to complete searches & web-crawling bots to collect indexes
- Supports many human languages

Search Engine Indexing (SEI)

- Is the process of collecting and storing data from websites so that a search engine can
quickly match the content against search terms.

(c) PageRank algorithm

- Developed by Google
- Attempt to rank pages by usefulness/importance
- Takes into account: # of inward/outward links & # of sites that link to current site
- The PageRank of the linking sites – the algorithm iteratively calculates the importance of

each site so that links from sites with a high importance are given a higher ranking than
those linked from sites of low importance.

(d) Server and client side processing
Server Side Processing: Processing that takes place on the web server

Pros Cons

- High security : data sent to server for
processing then sent back

- Extra load on the server makes running
the server more expensive

- Hides code from user to protect
copyright & being amended

- No need to rely on browser having
correct interpreter

Is best used where processing is integral e.g. generating content and accessing data including
secure data so any data passed must be checked carefully.

Client Side Processing: Processing that takes place on the web browser

Pros Cons

- More processing = Reduced load on
server = Reduced data traffic

- Code is visible so can be copied
- Browser may not run the code as it

doesn’t have the capability/ user
intentionally disabled client code - Quick feedback to user

- More responsive code

- Data doesn't need to be sent to server
and back

Is best used when it’s not critical code that runs. If it is critical then it should be carried out on
the server . Is also best where quick feedback to the user is needed – an example being games.

OCR A-Level Computer Science Spec Notes

1.4 Data types, data structures and algorithms
1.4.1 Data Types
(a) Primitive data types
Data types (All stored in the computer in Binary):

- Integer : Single whole number e.g (5,37,-102)
- String : A sequence of alphanumeric characters e.g (3A*s)
- Real: Numbers with decimal/fractional components e.g (3.14, 0.6)
- Character : Single digit/letter/symbol e.g (s,G,9,&)
- Boolean: Used to represent Binary logic (True/False, 0/1)

(b) Represent positive numbers in binary

- Binary is a base 2 number system whereas denary has a base 10
- To convert from Binary -> Denary (How I personally do it) I will convert 200 to denary:

● Create this nifty table (It looks btec but still) (apparently called the tabular method
according to Teach ICT) :

128 64 32 16 8 4 2 1

1 1 0 0 1 0 0 0
● Firstly we know 128 goes into denary so put a 1 under 128 in the table
● Then do 200-128 = 72. Now 64 goes into 72 once so put a 1 in that
● Now do 72-64 = 8. 32 & 16 don't go into 8 but 8 does do put a 1 in there
● Fill the rest of the boxes with 0
● Finito (Answer: 11001000)
● To summarize, keep subtracting and seeing whether the numbers in the top row

go into the subtracted value. It’s hard to explain just practice lmao.

(c) Sign and magnitude & two's complement for negative numbers
Sign & Magnitude:

- In denary, store a sign bit, a ‘+ ’ or ‘–’ as part of the number
- Simply use the most left-handed bit, to store these as a binary value, 0 for + and 1 for –

Corresponding Steps (example 127 & -127)

Sign Bit 64 32 16 8 4 2 1

0 (+) 1 1 1 1 1 1 1
= 127

Sign Bit 64 32 16 8 4 2 1

1 (-) 1 1 1 1 1 1 1
=-127

Two's Complement: An easy method for subtraction (Overpowered if use correctly):
1. Convert subtraction number into binary
2. Start from most right and keep all values the same until you reach the first ‘1’. Then after

that switch ‘1’s with ‘0’s and ‘0’s for ‘1’s’
3. Add the binary numbers and discard the overflow

Corresponding Steps (example Convert 75-35)

1. 35 in Binary = 00100011
2. 11011101 (-35)
3. Add 75 therefore (75+(-35)) = 01001011 + 11011101 = 0101000

(d) Addition and subtraction of binary numbers
Binary Addition (Check answer by doing in denary then converting)

- 0+0=0 / 1+0=10 (0 but carry 1 to next calc) / 1+1 = 11 (1 but carry 1 to next calc)
Binary Subtraction (Check answer by doing in denary then converting)

- 1-0=1 / 1-1=0 / 10- 1 = 1

(e) Represent positive numbers in hexadecimal
Hexadecimal uses a Base 16 Number System (4 bit system as 2 4=16)

- Same as denary upto 9 then letters are used where:
● 10=A/11=B/12=C/13=D/14=E/15=F

(f) Convert positive integers between binary, denary and hex
Denary-> Binary (E.g Convert 81 to Binary)

- Refer to (b) Represent positive numbers in binary
Binary -> Denary (E.g Convert 0101 1010 to Denary)

- Plug in Binary numbers into Nifty Table

128 64 32 16 8 4 2 1

0 1 0 1 1 0 1 0
- Just add the numbers which have a 1 below them (64+16+8+2 = 90)

Binary -> Hexadecimal (E.g Convert 0101 1010 to Hexadecimal)
- Split byte into 2 nibbles (0101 1010)
- Convert each nibble separately into Hexadecimal (0101 = 5 / 1010 = 10 = A)
- Combine the result together: 5D

Denary -> Hexadecimal
- Convert Denary into Binary
- Follow instructions for: Binary -> Hexadecimal

Hexadecimal -> Binary
- Split each Hex letter/number up
- Convert each letter/number into binary equivalent
- Join binary up again

Hexadecimal -> Denary
- Follow instructions for: Hexadecimal-> Binary
- Convert Binary into Denary

Alternate Way
- multiply each corresponding Hex digit with increasing powers of 16

3B = 3× 16 1+11× 160 = 48+11 = 5910

(g) Representation and normalisation of floating point numbers (Mantissa is normally 5 bits &
exponent is 3. Question will tell you if it changes)
Floating Point Numbers: A way of storing decimals in Binary

1. If a number is positive/negative , look at the first binary digit: 0 =positive, 1 = negative
2. Split into mantissa and exponent .
3. Use the exponent to float the binary point back into place (put decimal point after first

number)
4. Convert to denary.

Negative Values :

1. Split into mantissa and exponent .
2. Evaluate the exponent
3. Move the binary point one place to the left (If exponent is -1 for example)

The number of bits chosen for the mantissa & exponent affects the range and the accuracy of
the values that can be stored:

- If more bits are used for the mantissa = more accurate values.
- But the range is limited by the small exponent.
- If more bits are used for the exponent , = range of values stored is greater .
- But the accuracy is limited by the smaller mantissa.

(h) Floating point arithmetic, +ve, -ve, addition, subtraction
Addition of Floating Point Numbers (E.g 01011 001 + 01100 010)

1. Figure out what the exponents of the 2 bytes (001 = 1 & 010 =2)
2. Shift Mantissas according to exponents (010110 -> 01.011 & 01100 = 011.00)
3. Add digits together (01.011 + 11.00 = 100.011)

Subtraction of Floating Point Numbers

1. Figure out what the exponents of the 2 bytes (001 = 1 & 010 =2)
2. Shift Mantissas according to exponents (010110 -> 01.011 & 01100 = 011.00)
3. Add digits together (01.011 + 11.00 = 100.011)

(I) Bitwise manipulation and masks
Bitwise manipulation: The CPU is able to shift and mask binary to complete a range of
operations.

- Binary can be logically shifted left/right
- Shifting Left = *2 & Shifting Right = /2
- E.g Shifting 0001 (1) to the left = 0010 (2) & 1*2=2

Masking: Data used for bitwise operations. Using a mask (Byte/Nibble/bit etc) can be altered by
a bitwise manipulation.

- NOT performs a bitwise swap of values in a binary number (0 -> 1 & 1 -> 0)
- AND excludes bits by placing a 0 in the appropriate bit in the mask

● (0 AND 0 =0 / 0 AND 1 = 0 / 1 AND 1 = 1)
- OR resets bits by placing a 1 in the appropriate bit in the mask.

● (0 OR 0 =0 / 0 OR 1 = 1 / 1 OR 1 = 1)
- XOR checks if corresponding bits are the same.

● (0 XOR 0 =0 / 0 XOR 1 = 1 / 1 XOR 1 = 0)

(j) Character representation (ASCII and UNICODE)
Character Set

- Normally equates to the symbols on the keyboard that are represented by the computer
by unique binary numbers and may include control codes

- Number of bits used for one character is 1 byte
- number of characters tend to be a power of 2 and uses more bits for an extended set.

ASCII (American Standard Code for Information Interchange)
- ASCII is a 256 character set which is based on a 8-digit binary pattern (7 bits + parity bit)
- The limited character set makes it impossible to display other characters & symbols

outside the English alphabet
UNICODE

- UNICODE was originally a 16-bit coding system but now has over 65000
- Updated to remove the 16-bit restriction by using a series of code pages with each page

representing the chosen language symbols.
- Original ASCII representations are included with the same numeric values

1.4.2 Data Structures
(a) Arrays (3D), records, lists, tuples
Arrays

- Data structure which contains a set of data items of the same data type grouped
together under a single identifier

- Static data structure (Size can’t change)
- Each element can be accessed & addressed quickly by accessing the index/subscript
- Stored contiguously in memory
- Multi dimensional (1D (Spreadsheet), 2D (Table), 3D (Multiple Tables))

Records
- Data stores organised by attributes (fields) containing one item of data

Lists

- Abstract data type where the same item can occur twice
- Data stores organised by an index

Tuples
- Ordered set of values which are immutable (can’t be modified)
- Multiple data types stored as it’s similar to a list

(b) Linked lists, graphs, stack, queue, tree, binary search tree, hash table
Linked Lists

- Dynamic data structure
- Uses index values / pointers to sort lists in specific ways
- Can be organised into more than one category
- Needs to be traversed until desired element is found
- To add data: data added to the next available space & pointers adjusted
- To remove data: Pointer from previous item set to item that will be removed which

bypasses the removed item
- The contents may not be stored contiguously in memory.

Graphs
- Set of vertices/nodes connected by edges/arcs
- Can be represented by an adjacency matrix
- Edges can be:

● directional or bi-directional
● directed or undirected
● weighted or unweighted

- Searched by breadth/depth first traversal
Stack

- LIFO (Last In First Out)
- 2 pointers (Top/bottom) Top Pointer = Stack Pointer
- Data is added (PUSH) and removed (POP) from the top of the stack
- Stack overflow : When data is trying to go into stack but stack is full

Queue
- FIFO (First In First Out)
- 2 pointers (Start/End) Start Pointer = Queue Pointer
- Data is added (enqueue) from end & data removed (dequeue) from the top of queue

Tree
- Are dynamic branching data structures.
- They consist of nodes that have sub nodes (children).
- The first node at the start of the tree (root node)
- The lines that join the nodes are called (branches)

Binary search tree
- Each node has a maximum of 2 children from a left branch and a right branch.
- To add data to the tree, it is placed at the end of the list in the first available space and

added to the tree following the rules:
● If a child node is less than a parent node, it goes to the left of the parent.
● If a child node is greater than a parent node, it goes to the right of the parent.

Hash table

- Enable access to data that is not stored in a structured manner.
- Hash functions generate an address in a table for the data that can be recalculated to

locate that data.

1.4.3 Boolean Algebra
(a) Defining a problem using Boolean logic
Boolean Logic

- NOT (Negation) Symbol: ¬ (e.g if A=0 -> ¬A =1 / A=1 -> ¬A = 0)
- AND (Conjunction) Symbol: ^ (e.g if A=1 & B=1 -> A^B =1 Otherwise A^B = 0)
- OR (Disjunction) Symbol: v (e.g if A=1 / B=1 -> AvB =1 Otherwise AvB = 0)
- XOR (Exclusive Disjunction) Symbol: v (e.g if A=1 / B=1 (Not other)-> AvB =1 Otherwise

A v B = 0)
- NAND (Conjunction) Symbol: ¬(A ∧ B) (e.g if A=1/0 & B=1/0 -> AvB = 0/1 Otherwise AvB

= 1)
- NOR (Disjunction) Symbol: ¬(A V B) (e.g if A=1/0 & B=1/0 -> AvB = 1/0 Otherwise AvB = 0

)

(b) Manipulating Boolean expressions (Karnaugh maps)
Karnaugh maps

- Are a visual method for simplifying logical expressions.
- They show all the outputs on a grid of all possible outcomes (Truth Table)
- The method is to create blocks of 1s as large as possible so that the 1s are covered by as

few blocks as possible and no 0s are included.
- The blocks can wrap around the diagram if necessary, in both directions, from side to

side or from top to bottom .

The rules for using Karnaugh maps:

- No 0s (zeros) allowed & diagonal blocks
- Larger groups the better
- Every 1 must be within a block
- Overlapping blocks allowed
- Wrap around blocks allowed
- Aim for smallest possible groups Karnaugh Map

(c) Simplifying statements in Boolean algebra using rules
Equivalence / Iff (if and only if)

Symbol (AND) :

- ≡ e.g. (A ∧ B) ≡ ¬(¬A V ¬B) ------> (A AND B ≡ NOT (NOT A OR NOT B))

Alternative notations (XOR):

- e.g. (A ⊻ B) ≡ (A ∧ ¬B) V (¬A ∧ B) ------> (A XOR B ≡ (A AND NOT B) OR (NOT A AND B))

Boolean algebra
There are rules, similar to arithmetic (Statistics if you take A-level Maths), for manipulating

Boolean expressions:

Boolean Rule Boolean Expression Description

De Morgan’s
laws

● ¬(A V B) ≡ ¬A ∧ ¬B
● ¬(A ∧ B) ≡ ¬A V ¬B

● A NOR B ≡ NOT A AND NOT B
● A NAND B ≡ NOT A OR NOT B

Distribution ● A ∧ (B V C) ≡ (A ∧ B) V
(A ∧ C)

● A V (B ∧ C) ≡ (A V B) ∧
(A V C)

● A AND (B OR C) ≡ (A AND B) OR (A AND
C)

● A OR (B AND C) ≡ (A OR B) AND (A OR C)

Association ● (A ∧ B) ∧ C ≡ A ∧ (B ∧
C)

● (A V B) V C ≡ A V (B V C)

● (A AND B) AND C ≡ A AND (B AND C)
● (A OR B) OR C ≡ A OR(B OR C)

Commutation ● A ∧ B ≡ B ∧ A
● A V B ≡ B V A

● A AND B ≡ B AND A
● A OR B ≡ B OR A

Double
Negation

● ¬(¬ A) ≡ A ● NOT(NOT A) ≡ A

Simplification
Expressions

(1 = True
0 = False)

AND
● A ∧ A ≡ A
● A ∧ 0 ≡ 0
● A ∧ 1 ≡ A
● A ∧ ¬A ≡ 0

OR
● A V A ≡ A
● A V 0 ≡ A
● A V 1 ≡ 1
● A V ¬A ≡ 1

AND
● A AND A ≡ A
● A AND 0 ≡ 0
● A AND 1 ≡ A
● A AND NOT A ≡ 0

OR
● A OR A ≡ A
● A OR 0 ≡ A
● A OR 1 ≡ 1
● A AND NOT A ≡ 1

Absorption ● A V (A ∧ B) ≡ A
● A ∧ (A V B) ≡ A

● A OR (A AND B) ≡ A
● A AND (A OR B) ≡ A

(d) Logic gate diagrams and truth tables
Logic Gates: Building block of a digital circuit used to implement Boolean functions
Truth Table: Mathematical table used with logic gates to list out all possible scenarios of the
corresponding logic gate(s)

Logic Gates Examples:

Type of
GATE

Boolean
Expression

Diagram Truth Table

AND A ∧ B

OR A V B

NOT ¬A

NAND ¬(A ∧ B)

A B ¬(A ∧ B)

F F T

F T T

T F T

T T F

NOR ¬(A V B)

A B ¬(A V B)

F F T

F T F

T F F

T T F

XOR A ⊻ B

(e) D type flip flops, half and full adders
D type flip flops

- Store the state of a data bit in RAM
- D = Delay
- 2 Inputs: data(D) & clock
- 2 Outputs : the delayed data (Q) and the inverse

of the delayed data (¬Q)
Half Adders

- Half adders logic circuit with 2 inputs & outputs
- The sum (S) is an XOR gate (A XOR B)
- The carry (C) is an AND gate (A AND B)

Full adders

- Combination of half adders to make a full adder
- The sum (S) is an XOR gate
- The carry (C) is an AND gate
- A B and Cin are added together = The result is given in the sum (S) N And a carry bit in

Cout
Series of full adders combined together allows computers to add binary numbers.

OCR A-Level Computer Science Spec Notes
1.5 Legal, moral, cultural and ethical issues

1.5.1 Computing related legislation
(a) Data Protection Act 1998

- Is designed to protect personal data and focuses on controlling the storage of data about
the data subject .

- All data users must register with the Data Commissioner

There are eight provisions:

● Data must be processed fairly & lawfully
● Data must be adequate, relevant & not excessive
● Data must be accurate & up to date
● Data must not be retained for longer than necessary
● Data can only be used for the purpose for which it was collected
● Data must be kept secure
● Data must be handled in accordance with people’s rights
● Data must not be transferred outside the EU without adequate protection

(b) Computer Misuse Act 1990
Law aimed at illegal hackers who hack to exploit systems

- Offence to gain unauthorised access to computer material
● WIth intent to commit/facilitate commision of further crimes
● With intent to change the operation of a computer (Disturbing Viruses)

(c) Copyright, Design and Patents Act 1988

- Any individual/organisation who produces media/software/intellectual property has
the ownership protected by the act

- Other parties not allowed to copy/reproduce/redistribute without permission from
copyright owner

(d) Regulation of Investigatory Powers Act 2000
This act is about the use of the internet by criminals/terrorists. Regulates how authorities
monitor our actions. Certain organisations can:

- Demand ISPs to provides access to a customer’s communications.
- Allow mass surveillance of communications.
- Demand ISPs fit equipment to facilitate surveillance
- Demand access be granted to protected information
- Allow monitoring of an individual’s internet activities.
- Prevent the existence of such interception activities being revealed in court .

1.5.2 Moral and ethical issues
The individual moral, social, ethical and cultural opportunities and the risks of digital
technology:

● Computers in the workforce
Skill Sets for people have changed as technology advances:

- Robot manufacturing: Less direct manufacturing roles & more
technical/maintenance roles

- Online shopping : Less in-store jobs/more distribution (logistics) jobs
- Online banking: Closure of high street bank branches

● Automated decision making

Decisions which can be made by computers/systems. Depends of quality/accuracy of
data & precision of algorithm

- Electrical Power Distribution : Rapid responses to changing circumstances
- Plant Automation
- Airborne collision avoidance systems
- Credit assessments: Banks use system to create automatic assessments
- Stock Market Dealing : Automated Could have caused ‘flash crash’ (2010)

● Artificial intelligence

Perceived to either be beneficial or disadvantageous. AI is used daily for example:
- Credit-card checking : Looks for unusual credit card use to identify fraudulent

activity
- Speech recognition: Identify keywords/patterns to interpret meaning of speech
- Medical diagnosis systems: Self-diagnose illnesses & help medics in making

diagnoses
- Control systems: Monitor/interpret/predict events

● Environmental effects
- Computers are composed of: airborne dioxins, polychlorinated biphenyls (PCBs),

cadmium, chromium, radioactive isotopes, mercury
- Handled with great care during disposal
- Shipped off to countries with lower environmental standards
- Workers/children extract scrap metal from discarded parts which are

recycled/sold

● Censorship and the Internet
- Suppression on what can be accessed/published
- Material which is acceptable depends on the person
- Some countries apply censorship for political reasons
- Organisations e.g schools apply censorship that is beyond national censorship to

protect the individuals from material regarded as unsuitable by the organisation

● Monitor behaviour
- CCTV used to monitor behaviour
- Organisations track an individual's work to see if they are on target

- Organisations might track social media to ensure behaviour outside social media
is acceptable

● Analyse personal information

- Analysing data about an individual's behavior used to:
● Predict market trends
● Identify criminal activity
● Patterns to produce effective treatments for medical conditions

● Piracy and offensive communications

- Communications Act (CA) 2003
● This Act makes it illegal to ‘steal’ Wi-Fi access or send o ffensive messages or

posts.
● Under this Act, in 2012, a young man was jailed for 12 weeks for posting

offensive messages and comments about the April Jones murder and the
disappearance of Madeleine McCann

● Layout, colour paradigms and character sets
- Equality Act (2010)

● This Act makes it illegal to discriminate against individuals by not providing
a means of access to a service for a section of the public.

● This means web service providers have to make services more accessible e.g:
- Make it screen reader friendly
- Larger fonts/ Screen magnifier option
- Image tagging
- Alternate text for images
- Colour changes to factor colour blind people
- Transcripts of sound tracks/subtitles

OCR A-Level Computer Science Spec Notes

2.1 Elements of computational thinking
Computational Thinking: Take a complex problem, understand what the problem is and develop
possible solutions.

2.1.1 Thinking abstractly
(a) The nature of abstraction.

- Abstraction is a representation of reality
(b) The need for abstraction.

- Needed to encapsulate methods/data so larger problems can be worked on without too
much detail

(c) The difference between abstraction and reality
- Abstraction takes a real life situation and removes unnecessary details in order to reach

a solution quicker by focusing on the most important areas of the problem.
(d) Devise an abstract model for a variety of situations.

- Examples of Abstractions: Variables/Objects/Layers/Data Modules/Data
Structures/Entity Diagrams

2.1.2 Thinking ahead
(a) Identify the inputs and outputs for a given situation.

- Thinking ahead involves planning potential inputs & outputs of a system

(b) Determine the preconditions for devising a solution to a problem.
When planning , computer scientists will:

- Determine outputs required & inputs necessary to achieve the outputs
- Consider the resources needed & user expectations.

Strategies can be made to:
- Decide what is to be achieved
- Determine prerequisites & what's possible within certain conditions

(c) The nature, benefits and drawbacks of caching.

- Illustration of thinking ahead (Caching)
- Caching : Data stored in cache/RAM if needed again = Faster future access

(d) The need for reusable program components
Reusable program components

- Software is modular e.g object/function
- Modules transplanted into new software / shared at run time through the use of

libraries
- Modules already tested = more reliable programs.
- Less development time as programs can be shorter & modules shared

2.1.3 Thinking procedurally
(a) Identify the components of a problem

- Thinking procedurally = Decomposition

(b) Identify the components of a solution to a problem

- Large problems broken down into smaller problems to work towards solution

(c) Determine the order of the steps needed to solve a problem
- Order of execution needs to be taken into account – may need data to be processed by

one module before another can use it

(d) Identify the sub-procedures necessary to solve a problem
- Large human projects benefit from the same approach.

2.1.4 Thinking logically
(a) Identify the points in a solution where a decision has to be taken

- Decisions can be made on the spot or before starting a task
- It’s important to know where decisions are taken as it affects program

inputs/outputs/functionality

(b) Determine the logical conditions that affect the outcome of a decision
Consider :

- Are you planning the right thing?
- You need to think about the steps of a solution – will it yield the right results?
- What information do you have?
- Is it enough to form a certain (or acceptable) conclusion?
- What extra information do you need?
- What information do you have but don’t need?

(c) Determine how decisions affect flow through a program

- Decisions made can either:
● Speed up the process
● Decrease the speed of the process
● Change the inputs/outputs
● Program functionality can change

2.1.5 Thinking concurrently
(a) Determine the parts of a problem that can be tackled at the same time

- Most modern computers can process a number of instructions at the same time (thanks
to multi-core processors and pipelining).

- This means programs need to be specially designed to take advantage of this.
- Modules processed at the same time should be independent.
- Well-designed programs can save a lot of processing time.
- Human activities also benefit from this.

- Project planning attempts to process stages simultaneously if possible , so the project
gets completed more quickly.

(b) Outline the benefits and trade offs that might result from concurrent processing

Concurrent (Parallel) Processing:

- Carrying out more than one task at a time/a program has multiple threads
- Multiple processors/Each thread starts and ends at different times
- Each processor performs simultaneously/Each thread overlap
- Each processor performs tasks independently/ Each thread runs independently
- These affect the algorithms which are made

OCR A-Level Computer Science Spec Notes
2.2 Problem solving and programming

2.2.1 Programming techniques
(a) Programming constructs: Sequence, iteration, branching
Programming Constructs (Methods of writing code):

- Sequence
● Series of statements which are executed one after another
● Most common programming construct

- Branching/Selection
● Decisions made on the state of a Boolean expression
● Program diverges to another part on program based on

whether a condition is true or false
● IF statement is a common example of Selection

- Iteration

● = repetition . A section of code repeated for a set
amount of time / until condition is met

● Loop: When a section of code is repeated
● Example of For Loop ->
● Example of While Loop ↓

(b) Recursion, how it can be used and compares to an iterative approach

- Subroutine/Subprogram/Procedure/Function that calls itself
- Another way to produce iteration

(c) Global and local variables
Variables : Named locations that store data in which contents can be changed during program
execution

- Assigned to a data type
- Declared/Explicit statement

Global Variables
- Defined/declared outside subprograms (Functions/Procedures etc)
- Can be ‘seen’ throughout a program
- Hard to integrate between modules
- Complexity of program increases
- Causes conflicts between names of other variables
- Good programming practice to not use global variables (Can be altered)

Local Variables
- Declared in a subroutine and only accessible within that subroutine
- Makes functions/procedures reusable
- Can be used as a parameter
- destroyed/deleted when subroutine exits
- same variable names within two different modules will not interfere with one another
- Local variables override global variables if they have the same name

(d) Modularity, functions, procedures, parameters
Modularity : Named locations that store data in which contents can be changed during program
execution

- Program divided into separate tasks
- Modules divided into smaller modules
- Easy to maintain, update and replace a part of the system
- Modules can be attributed to different programmers strength
- Less code produced

Functions
- Subroutine/subprogram/module/named sub-section of program/block which most of

the time returns a value
- Performs specific calculations & returns a value of a single data type
- Uses local variables & is used commonly
- Value returned replaces function call so it can be used as a variable in the main body of a

program
Procedures

- Performs specific operations but don’t return a value
- Uses local variables
- Receives & usually accepts parameter values
- Can be called my main program /another procedure
- Is used as any other program instruction or statement in the main program

Parameters
- Description/Information about data supplied into a subroutine when called
- May be given identifier/name when called
- Substituted by actual value/address when called
- May pass values between functions & parameters via reference/ by value
- Uses local variables

Passed by Value :

- A copy is made of the actual value of the variable and is passed into the procedure.

- Does not change the original variable value.
- If changes are made, then only the local copy of the data is amended then discarded.
- No unforeseen effects will occur in other modules.
- Creates new memory space

Passed by Reference :

- The address/pointer/location of the value is passed into the procedure .
- The actual value is not sent/received
- If changed, the original value of the data is also changed when the subroutine ends
- This means an existing memory space is used.

(e) Use of an IDE to develop/debug a program
IDE (Integrated Development Environment) contains the tools needed to write/develop/debug
a program . Typical IDE has the following tools:

- Debugging tools
● Inspection of variable names
● Run-time detection of errors
● Shows state of variables at where error occurs

- Translator diagnostics:
● Reports syntax errors
● Suggests solutions & informs programmer to correct error
● Error message can be incorrect/misinterpreted

- Breakpoint:
● Tests program at specified points/lines of code
● Check values of variables at that point
● Set predetermined point for program to stop & inspect code/variables

- Variable watch:
● Monitors variables/objects
● Halt program if condition is not met

- Stepping:
● Set program to step through one line at a time
● Execution slows down to observe path of execution + changes to variable names
● Programmer can observe the effect of each line of code
● Can be used with breakpoints + variable watch

(f) Use of object orientated techniques

- Many programs written using objects (Building blocks)
- Self contained
- Made from methods & attributes
- Based on classes
- Many objects can be based in the same class
- Most programs made using object-oriented techniques

2.2.2 Computational methods
(a) Features that make a problem solvable by computational methods
Computability : Something which is not affected by the speed/power of a machine

Computational methods can help to break down problems into sections for example:

- Models of situations / hypothetical solutions can be modelled
- Simulations can be run by computers
- Variables used to represent data items
- Algorithms used to test possible situations under different circumstances

Features that make a problem solvable by computational methods:

- Involves calculations as some issues can be quantified - these are easier to process
computationally

- Has inputs, processes and outputs
- Involves logical reasoning .

(b) Problem recognition

- A problem should be recognised/identified after looking at a situation and possible
solutions should be divided on how to tackle the problems using computational methods

(c) Problem decomposition
Problem Decomposition

- Splits problem into subproblems until each problem can be solved.
- Allows the use of divide and conquer
- Increase speed of production .
- Assign areas to specialities.
- Allows use of pre-existing modules & re-use of new modules.
- Need to ensure subprograms can interact correctly .
- Can introduce errors.
- Reduces processing/memory requirements.
- Increases response speeds of programs.

(d) Use of divide and conquer
Divide and Conquer : When a task is split into smaller tasks which can be tackled more easily

(e) Use of abstraction
Abstraction : Process of separating ideas from particular instances/reality

- Representation of reality using various methods to display real life features
- Removes unnecessary details from the main purpose of the program
- E.g Remove parks/roads on an Underground Tube Map

Examples of Abstraction: Variables/data structure/network/layers/symbols (maps)/Tube Map

(f) Applying computational methods
Other computational Methods:

- Backtracking
● Strategy to moving systematically towards a solution
● Trial & Error (Trying out series of actions)
● If the pathway fails at some point = go to last successful stage
● Can be used extensively

- Heuristics
● Not always worth trying to find the ‘perfect solution’
● Use ‘ rule of thumb’ /educated guess approach to arrive at a solution when it is

unfeasible to analyse all possible solutions
● Used to speed up finding solutions for A* algorithm
● Useful for too many ill-defined variables

- Data mining
● Examines large data sets and looks for patterns/relationships
● Brute force with powerful computers
● Incorporates: Cluster analysis, Pattern matching, Anomaly detection, Regression

Analysis
● Attempts to show relationships between facts/components/events that may not

be obvious which can be used to predict future solutions
- Visualisation

● A computer process presents data in an easy-to-grasp way for humans to
understand (visual model)

● Trends and patterns can often be better comprehended in a visual display .
● Graphs are a traditional form of visualisation.
● Computing techniques allow mental models of what a program will do to be

produced.
- Pipelining

● Output of one process fed into another
● Complex jobs placed in different pipelines so parallel processing can occur
● Allow simultaneous processing of instructions where the processor has

multi-cores
● Similar to factory production in real life

- Performance modelling
● Example of abstraction
● Real life objects/systems (computers/software) can be modelled to see how they

perform & behave when in use
● Big-O notation used to measure algorithm behaviour with increasing input
● Simulations predict performance before real systems created

OCR A-Level Computer Science Spec Notes

2.3 Algorithms

2.3.1 Algorithms
(a) Analysis and design of algorithms for a given situation
Algorithms : Set of instructions that complete a task when execute

- Algorithms run by computers are called 'programs'

- Scale algorithms by:

● The time it takes for the algorithm to complete

● The memory/resources the algorithm needs. 'space'.
● Complexity (Big O notation)

(b) The suitability of different algorithms for a given task and data set, in terms of execution time
and space
There are different suitable algorithm s for each task

● Space efficiency:
- The measure of how much memory (space) the algorithm takes as its input (N) is scaled

up
- Space increases linearly with N
- Code space is constant/data space is also constant

● Time efficiency
- Measure of how much time it takes to complete an algorithm as its input (N)

increases
- Time increases linearly with N
- Sum of numbers = n(n+1)/2

● Big O notation
- Refer to ((c) Measures and methods to determine the efficiency of algorithms (Big

O) notation (constant, linear, polynomial, exponential and logarithmic complexity))

(c) Measures and methods to determine the efficiency of algorithms (Big O) notation (constant,
linear, polynomial, exponential and logarithmic complexity)
(Big O) notation

- Shows highest order component with any constants removed to evaluate the complexity
and worst-case scenario of an algorithm .

- Shows how time increases as data size increases to show limiting behaviour .

Big O Notation

● O(1) – Constant complexity e.g. printing first letter of string.
● O(n) – Linear complexity e.g. finding largest number in list.
● O(kn) – Polynomial complexity e.g. bubble sort.
● O(k^n) – Exponential complexity e.g. travelling salesman problem.
● O(logn) – Logarithmic complexity e.g. binary search

(d) Comparison of the complexity of algorithms
Complexity

- Complexity is a measure of how much time, memory space or resources needed for an
algorithm increases as the data size it works on increases.

- Represents the average complexity in Big-O notation .
- Big-O notation just shows the highest order component with any constants removed .
- Shows the limiting behaviour of an algorithm to classify its complexity.
- Evaluates the worst case scenario for the algorithm.

Types of Complexity

Complexity Description Graph

Constant
complexity

O(1)

- Time taken for an algorithm stays the same
regardless of the size of the data set

- Example: Printing the first letter of a string. No
matter how big the string gets it won’t take longer to
display the first letter.

Linear
complexity

O(n)

- This is where the time taken for an algorithm
increases proportionally or at the same rate with
the size of the data set.

- Example: Finding the largest number in a list. If the
list size doubles, the time taken doubles.

Polynomial
complexity

O(kn) (where
k>=0)

- This is where the time taken for an algorithm
increases proportionally to n to the power of a
constant .

- Bubble sort is an example of such an algorithm.

Exponential
complexity

O(k^n)
(where k>1)

- This is where the time taken for an algorithm
increases exponentially as the data set increases.

- Travelling Salesman Problem = example algorithm.
- The inverse of logarithmic growth .
- Does not scale up well when increased in number of

data items.

Logarithmic
complexity

O(log n)

- This is where the time taken for an algorithm
increases logarithmically as the data set increases.

- As n increases, the time taken increases at a slower
rate, e.g. Binary search.

- The inverse of exponential growth .
- Scales up well as does not increase significantly

with the number of data items.

(e) Algorithms for the main data structures (stacks, queues, trees, linked lists, depth-first
(post-order) and breadth-first traversal of trees)

Data Structures Description Algorithm

Stack PUSH - When a data item is
added to the top of a
stack

Stack POP - When a data item is
removed from the
top of a stack

Queue PUSH - When a data item is
added to the back of
a queue

Queue POP - When a data item is
removed from the
front of a queue

Linked List
(Output in

Order)

- When the contents
of a linked list are
displayed in order

Linked List (Add
item to list)

- When a data item is
added anywhere on a
linked list

Tree

Traversal
Description Algorithm

Depth first
(post-order)

- Visit all nodes to the left
of the root node

- Visit right
- Visit root node
- Repeat three points for

each node visited
- Depth first isn’t

guaranteed to find the
quickest solution and
possibly may never find
the solution if no
precautions to revisit
previously visited states.

Breadth
first

- Visit root node
- Visit all direct subnodes

(children)
- Visit all subnodes of first

subnode
- Repeat three points for

each subnode visited
- Breadth first requires

more memor y than Depth
first search.

- It is slower if you are
looking at deep parts of
the tree.

(f) Standard algorithms (bubble sort, insertion sort, merge sort, quick sort, Dijkstra's shortest
path algorithm,A* algorithm, binary search and linear search)

Sort Description Algorithm

Bubble Sort - Is intuitive (easy to
understand and program)
but inefficient.

- Uses a temp element .
- Moves through the data

in the list repeatedly in a
linear way

- Start at the beginning
and compare the first
item with the second.

- If they are out of order,
swap them and set a
variable swapMade true .

- Do the same with the
second and third item,
third and fourth , and so
on until the end of the
list .

- When, at the end of the
list, if swapMade is true,
change it to false and
start again ; otherwise, If
it is false , the list is
sorted and the algorithm
stops .

Insertion
Sort

- Works by dividing a list
into two parts: sorted
and unsorted

- Elements are inserted
one by one into their
correct position in the
sorted section by
shuffling them left until
they are larger than the
item to the left of them
until all items in the list
are checked.

- Simplest sort algorithm
- Inefficient & takes longer

for large sets of data

Merge Sort - Works by splitting n data
items into n sublists one
item big .

- These lists are then
merged into sorted lists
two items big , which are
merged into lists four
items big, and so on until
there is one sorted list.

- Is a recursive algorithm
= require more memory
space

- Is fast & more efficient
with larger volumes of
data to sort.

Quick Sort - Uses divide and conquer
- Picks an item as a ‘pivot’ .
- It then creates two

sub-lists: those bigger
than the pivot and those
smaller.

- The same process is then
applied
recursively/iteratively
to the sub-lists until all
items are pivots, which
will be in the correct
order .

- Alternative method uses
two pointers.

- Compares the numbers
at the pointers and swaps
them if they are in the
wrong order .

- Moves one pointer at a
time .

- Very quick for large sets
of data .

- Initial arrangement of
data affects the time
taken .

- Harder to code.

Path Algorithms Description Algorithm

Dijkstra’s
shortest path

algorithm

- Finds the shortest
path between two
nodes on a graph.

- It works by keeping
track of the shortest
distance to each
node from the
starting node.

- It continues this until
it has found the
destination node.

A* algorithm - Improvement on
Dijkstra’s algorithm .

- Heuristic approach
to estimate the
distance to the final
node , = shortest path
in less time

- Uses the distance
from the start node
plus the heuristic
estimate to the end
node .

- Chooses which node
to take next using
the shortest distance
+ heuristic.

- All adjoining nodes
from this new node
are taken .

- Other nodes are
compared again in
future checks.

- Assumed that this
node is a shorter
distance.

- Adjoining nodes may
not be shortest path
so may need to
backtrack to
previous nodes.

Search Type Description Algorithm

Binary Search
Recursive

- Requires the list to be
sorted in order to
allow the appropriate
items to be
discarded .

- It involves checking
the item in the
middle of the bounds
of the space being
searched.

- It the middle item is
bigger than the item
we are looking for, it
becomes the upper
bound.

- If it is s maller than
the item we are
looking for , it

Binary Search
Iterative

becomes the lower
bound.

- Repeatedly discards
and halves the list at
each step until the
item is found.

- Is usually faster in a
large set of data than
linear search because
fewer items are
checked so is more
efficient for large
files .

- Doesn't benefit from
increase in speed
with additional
processors.

- Can perform better
on large data sets
with one processor
than linear search
with many
processors.

Linear Search - Start at the first
location and check
each subsequent
location until the
desired item is found
or the end of the list
is reached .

- Does not need an
ordered list and
searches through all
items from the
beginning one by
one.

- Generally performs
much better than
binary search if the
list is small or if the
item being searched
for is very close to
the start of the list

- Can have multiple
processors searching
different areas at the
same time.

- Linear search scales
very with additional
processors.

Summary

 Worst Case Best Case

Bubble Sort n² n

Insertion Sort n² n

Merge Sort n log n n log n

Quick Sort n² n log n

Binary Search log_2 (n) 1

Linear Search n 1

