

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

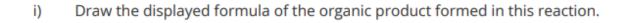
Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Topic Question

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY


AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Question 1.

(a)	When 1-chloropropane is heated under reflux with ethanolic potassium cyanide,	KCN,
	the following reaction occurs.	

[1]

ii)	State the IUPAC na	me of this orgar	nic product.		[41]
					[1]
				-	
				-	(2 m a vlsa)
				-	(2 marks)

(b) Suggest why this reaction is useful to chemists during the synthesis of other organic compounds.

EXAM PAPERS PRACTICE

Copyright (1 mark)

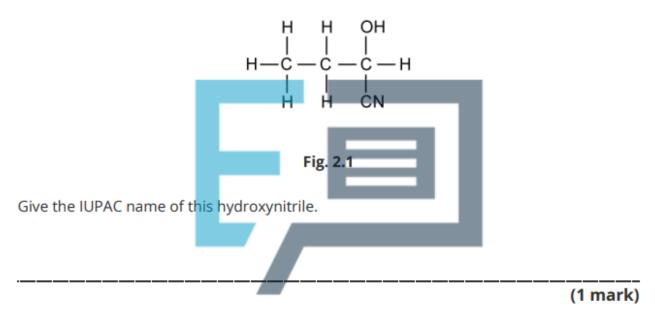
- (6) The 2ch 3 Enganger and and engangerings is.
 - i) Write the equation for the acid hydrolysis of $CH_3CH_2CH_2CN$.

[2]

ii) Draw the displayed formula of the intermediate formed when CH₃CH₂CH₂CN is hydrolysed by sodium hydroxide.

[1]

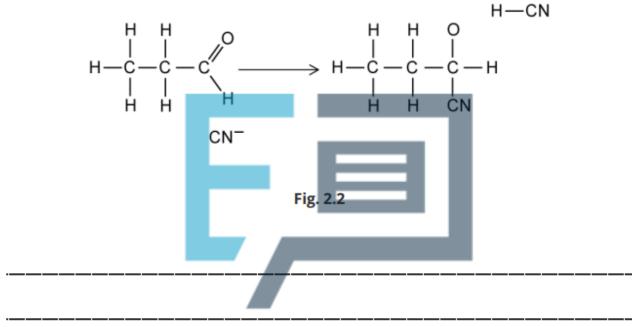
._____


(3 marks)

Question 2.

(a) This question is about hydroxynitriles.

The hydroxynitrile shown in Fig. 2.1 can be prepared from the reaction between propanal and hydrogen cyanide.


EXAM PAPERS PRACTICE

Copyright

(b) Using 'curly arrows', complete the reaction mechanism shown in Fig. 2.2 for the reaction between propanal and the cyanide ion, CN⁻.

Include any lone pairs of electrons and partial or whole charges.

EXAM PAPERS PRACTICE

C	opyright	
	2024 Exam Papers Practice	(4 marks)

(c) Name the type of reaction mechanism shown in Fig. 2.2.

Question 3.

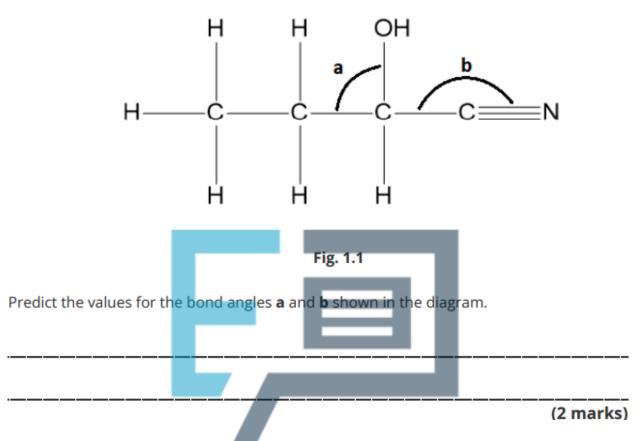
(a) Propanal undergoes nucleophilic addition with a mixture of HCN and NaCN to make 2-hydroxybutanenitrile, CH₃CH₂CH(OH)CN.

The mechanism for this reaction occurs in two main steps. The first step involves a nucleophile attacking the carbonyl carbon of propanal.

Explain which species acts as the nucleophile during this reaction.

(b) The second step in the mechanism involves an intermediate species, CH₃CH₂C(O)HCN⁻, reacting with HCN to form 2-hydroxybutanenitrile.

Draw the mechanism for this step. Draw the mechanism for this step.


Copyrightdentify the intermediate species that reacts with HCN.

Once pairs and curly arrows.

Zoz i Exami apero i lactice	
	(3 marks)

(c) The structure of the 2-hydroxybutanenitrile product is shown in Fig. 1.1.

(d) The product 2-hydroxybutanenitrile exists as a pair of stereoisomers.

EXAM PAPERS PRACTICE

i) Name the type of stereoisomerism shown by 2-hydroxybutanenitrile.

Copyright

© 2024 Exam Papers Practice

[1]

 Draw three-dimensional diagrams of this pair of stereoisomers. Indicate with an asterisk (*) the chiral centre on one of the structures drawn.

[3]

(4 marks)

Question 4.

(a) Two students try to prepare butanoic acid from a halogenoalkane in the laboratory.

Both students perform a nucleophilic substitution reaction to form **P** in reaction 1 of **Fig. 2.1**.

They both form butanoic acid from **P** but student **A** uses a single reaction, while student **B** uses two reactions.

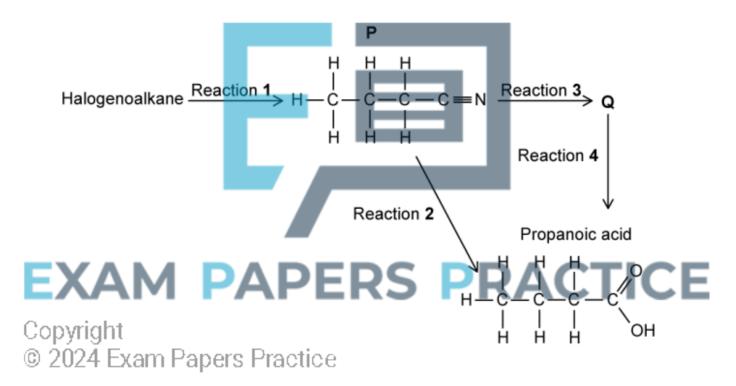


Fig. 2.1

i) State the reagents and conditions required for reaction 1.

[2]

Student **B** uses a different halogenoalkane which forms **P** at a slower rate.

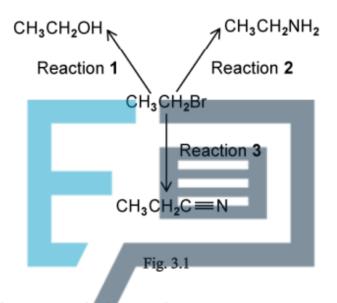
Student A uses 1-bromopropane to form P.

ii)

	Suggest the identity of the halogenoalkane that student ${\bf B}$ uses. Explain your answer.	
		[2]
(b) Stude	ent A converts P into butanoic acid in a single step, reaction 2. Name the type of reaction occurring in reaction 2.	 (4 marks
		[1]
ii)	State an appropriate reagent for reaction 2 and name the other product of the reaction.	CE
Соруі © 202	right 24 Exam Papers Practice	[1]
	(2 m	narks)

(c) Student B converts P into Q using dilute sodium hydroxide in reaction 3. This is followed by acidification of the product in reaction 4 to form butanoic acid. Draw the structural formula of Q. (1 mark) (d) Explain why it is likely that student A will have a higher overall yield of butanoic acid from their halogenoalkane than student B. (2 marks)

EXAM PAPERS PRACTICE


Copyright © 2024 Exam Papers Practice

Question 5.

(a) Halogenoalkanes are often used as intermediates in organic reactions.

Three reactions of bromoethane, CH₃CH₂Br, are shown if Fig. 3.1.

For each reaction, state the reagent and solvent used.

EXAM PAPERS PRACTICE

		(6 marks)
	solvent	
reaction 3	reagent	
1000110112	solvent	
reaction 2	reagent	
© 2024 Exam Pap	er8 ¹ Pfactice	
Copyrigenction 1		
	reagent	

For more help visit our website https://www.exampaperspractice.co.uk/

(b) Reactions 1 and 3 require specific reaction conditions to occur as shown in Fig. 3.1.

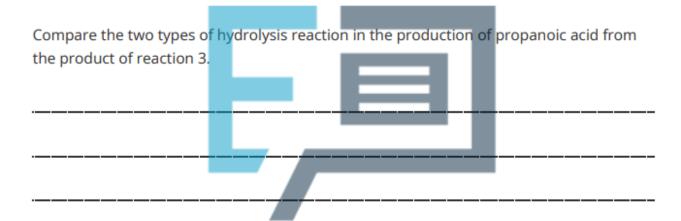
For each reaction, give another solvent and the alternative product that will be formed.

reaction 1	alternative solvent
reaction	alternative product
reaction 3	alternative solvent
	alternative product

Copyright (4 marks)

- © 2024 Exam Papers Practice (c) The product of reaction 2 can be converted into CH₃CN.
 - Name the compound CH₃CN. i)

[1]

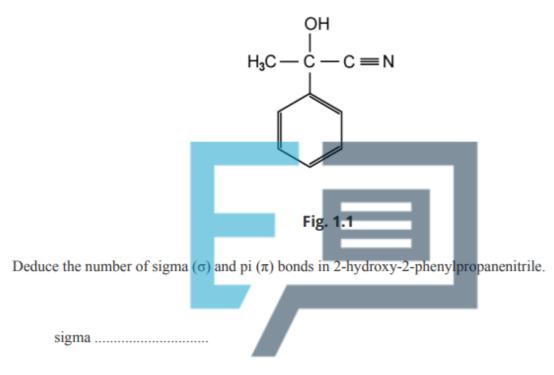

Name the type of reaction used to form CH₃CN. ii)

[1]

 (2 marks)

(d) The product of reaction 3 can be used to produce propanoic acid by two different hydrolysis reactions.

EXAM PAPERS PRACTICE

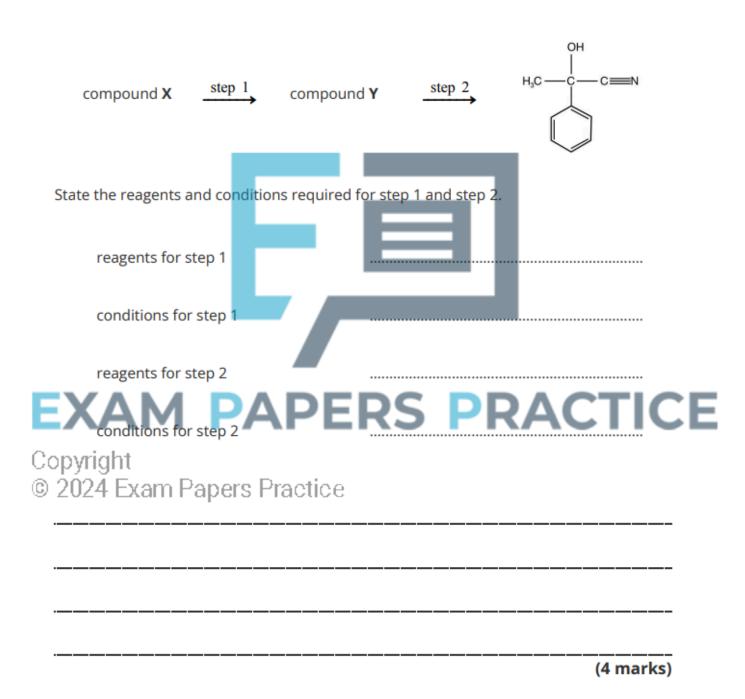

(5 marks)

Copyright

Question 6.

(a) 2-hydroxy-2-phenylpropanenitrile is shown in Fig. 1.1.

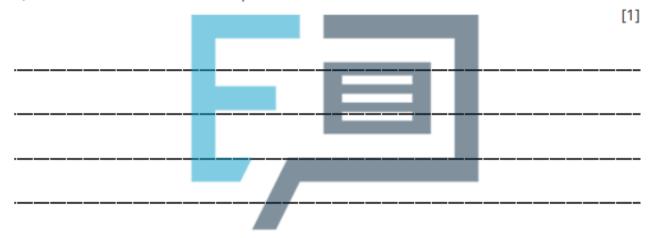
EXAM PAPERS PRACTICE


Copyright	
© 2024 Fxam Papers Practice	
	(2 marks)

(b) A molecule of 2-hydroxy-2-phenylpropanenitrile contains sp, sp² and sp³ hybridised carbon atoms.

State the number of sp, sp² and sp³ hybridised carbon atoms in a molecule of 2-hydroxy-2-phenylpropanenitrile.

(c) 2-hydroxy-2-phenylpropanenitrile can be produced from compound **X**, a secondary alcohol, in a two-step synthesis.



(d) i) Draw the mechanism for the second step in the synthesis of 2-hydroxy-2-phenylpropanenitrile.

You should clearly show the structure of compound **Y** and any intermediate formed and include all relevant charges, partial charges, curly arrows and lone pairs.

[6]

ii) Draw the structure of compound X.

EXAM PAPERS PRACTICE

Copyright

© 2024 Exam Papers Practice

(7 marks)

Question 7.

(a)	2,2-dimethylpentanenitrile is useful in the synthesis of a variety of medicines and
	pharmaceuticals.

Draw the skeletal formula of 2,2-dimethylpentanenitrile.

(1 mark)

(b) 2,2-dimethylpentanenitrile undergoes hydrolysis when heated with dilute hydrochloric acid.

Write an equation for the hydrolysis of 2,2-dimethylpentanenitrile.

(2 marks)

EXAM PAPERS PRACTICE

Copyright

(c) 2,2-dimethylpentanoic acid can also be produced by the hydrolysis of 2,2-dimethylpentanenitrile using sodium hydroxide but this occurs in two steps.

i) Draw the fully displayed formula of the intermediate organic product.

[1]

ii) State the other product formed with this intermediate organic product.

[1]

iii) State the type of reaction that is required to produce 2,2-dimethylpentanoic acid from this intermediate organic product.

[1]

(3 marks)

EXAM PAPERS PRACTICE

Copyright