Boost your performance and confidence with these topic-based exam questions Practice questions created by actual examiners and assessment experts Detailed mark scheme Suitable for all boards Designed to test your ability and thoroughly prepare you Mathematics: applications and interpretation Standard level Level: IB Maths Subject: IB Maths Al SL Board: IB Maths Topic: Past Paper 1 **IB MATHS** AI SL Key skills # Mathematics: applications and interpretation ### Standard level # Paper 1 Specimen paper Candidate session number - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - A graphic display calculator is required for this paper. - Answer all questions. - Answers must be written within the answer boxes provided. - Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures. - A clean copy of the mathematics: applications and interpretation formula booklet is required for this paper. - The maximum mark for this examination paper is [80 marks]. Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. #### 1. [Maximum mark: 6] Palvinder breeds Labrador puppies at his farm. Over many years he recorded the weight (g) of the puppies. The data is illustrated in the following box and whisker diagram - (a) Write down the median weight of the puppies. [1] - (b) Write down the upper quartile. [1] - (c) Find the interquartile range. [2] The weights of these Labrador puppies are normally distributed. (d) Find the weight of the heaviest possible puppy that is not an outlier. [2] (This question continues on the following page) | (Question 1 continued) | |----------------------------| EXAM PAPERS PRACTICE | | EAAMIPAPERSIPRACIICE | | © 2021 Law Papers Practice | Turn over The Osaka Tigers basketball team play in a multilevel stadium. The most expensive tickets are in the first row. The ticket price, in Yen (¥), for each row forms an arithmetic sequence. Prices for the first three rows are shown in the following table. Copyright © 2024 Exam Papers Proctice | Ticket pricing per game | | | | |-------------------------|----------|--|--| | 1st row | 6800 Yen | | | | 2nd row | 6550 Yen | | | | 3rd row | 6300 Yen | | | - (a) Write down the value of the common difference, d - (b) Calculate the price of a ticket in the 16th row. - (c) Find the total cost of buying 2 tickets in each of the first 16 rows. [2] [3] [1] | EXAM PAPERS PRACTICE | |------------------------------| | | | © 2074 Color Papers Practice | | | | | | | | | | | | | | | | | **Turn over** | 2 | ΓN / - > είνα- ο ν ν σ- | | \sim 1 | |----|-------------------------|-------|----------| | ٠. | III/Iayımıım | mark: | nı | | 3. | [Maximum | man. | O1 | At the end of a school day, the Headmaster conducted a survey asking students in how many classes they had used the internet. The data is shown in the following table. | Number of classes in which the students used the internet | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |---|----|----|----|----------|----|---|---| | Number of students | 20 | 24 | 30 | <u>k</u> | 10 | 3 | 1 | | (a) State whether the data is discrete or continuous. | [1] | |---|---------------| | The mean number of classes in which a student used the internet is 2. | | | (b) Find the value of k . | [4] | | It was not possible to ask every person in the school, so the Headmaste student names in alphabetical order and then asked every 10th person of | //\ / I I / L | | (c) Identify the sampling technique used in the survey. | [1] | The perimeter of a given square P can be represented by the function PA A () $4 = A \ge 0$, where A is the area of the square. The graph of the function P is shown for $A \ge 0$. (a) Write down the value of P(25). The range of P A() is $0 () \le \le PA n$. (b) Hence write down the value of n. [1] (c) On the axes above, draw the graph of the inverse function, 1 P- . [3] (d) In the context of the question, explain the meaning of 1 P (8) 4 - = . [1] (This question continues on the following page) [1] | (Question 4 continued) | |------------------------| EXAM PAPERS PRACTICE | Professor Vinculum investigated the migration season of the Bulbul bird from their natural wetlands to a warmer climate. | | |---|--| | He found that during the migration season their population, P could be modelled by 1350 400(1.25) t P - = + , t \geq 0 , where t is the number of days since the start of the migration season. | | | (a) Find the population of the Bulbul birds, | | | (i) at the start of the migration season. | | 5. | (ii) in the wetlands after 5 days. | [3] | |---|-----| | (b) Calculate the time taken for the population to decrease below 1400. | [2] | | (c) According to this model, find the smallest possible population of Bulbul birds during the | | | migration season. | [1] | | EXAM PAPERS PRACTICE | | | Central L
© 3921 Crain Papers Practice | As part of a study into healthy lifestyles, Jing visited Surrey Hills University. Jing recorded a person's position in the university and how frequently they ate a salad. Results are shown in the table. | | Salad meals per week | | | | | | |--------------------------|----------------------|-----|-----|----|--|--| | | 0 | 1-2 | 3-4 | >4 | | | | Students | 45 | 26 | 18 | 6 | | | | Professors | 15 | 8 | 5 | 12 | | | | Staff and Administration | 16 | 13 | 10 | 6 | | | Jing conducted a χ^2 test for independence at a 5% level of significance. | (a) State the null hypothesis. | [1] | |---|-----| | (b) Calculate the p-value for this test. | [2] | | (c) State, giving a reason, whether the null hypothesis should be accepted. | [2] | | Capcinghi
© paga (con l'aperchistice | Points A(3, 1), B(3, 5), C(11, 7), D(9, 1) and E(7, 3) represent snow shelters in the Blackburn National Forest. These snow shelters are illustrated in the following coordinate axes. Horizontal scale: 1 unit represents 1 km. Vertical scale: 1 unit represents 1km. (a) Calculate the gradient of the line segment AE. (This question continues on the following page) [2] ## (Question 7 continued) The Park Ranger draws three straight lines to form an incomplete Voronoi diagram. (b) Find the equation of the line which would complete the Voronoi cell containing site E. Give your answer in the form ax + by + d = 0 where $a, b, d \in$. [3] | (c) In th | ne context of the question, explain the significance of the Voronoi cell containing site E. [1 |] | |-----------|--|---| | | Cephinght © 2924 Exam Papers Practice | | | | | • | | | | • | | | | | | | | - | | | | - | | | | | | | | | | | | | | | | - | | | | | | | | - | | | | - | | | | | | ^ | FR 4! | 41 | |----|----------------|----------| | 8. | [Maximum | mark: 41 | | υ. | IIVIAAIIIIUIII | main. Ti | The intensity level of sound, L measured in decibels (dB), is a function of the sound intensity, S watts per square metre (W m $^{-2}$). The intensity level is given by the following formula. $$L = 10 \log_{10}(S \times 10^{12}), S \ge 0$$ | (a) | An orchestra has a sound intensity of $6.4\times10^{-3}\mathrm{Wm^{-2}}$. Calculate the intensity level, L of the orchestra. | [2] | |----------------------|---|-----| | (b) | A rock concert has an intensity level of $112\mathrm{dB}$. Find the sound intensity, S . | [2] | |
 | ······ | | |
 | ······································ | | |
 | | | |
 | ······································ | | |
 | ······································ | | |
 | VALA DADEDO DDACTICE | | | | XAM PAPERS PRACTICE | | |
Ceps 1
(0.04) | schi
4 Exam Papers Practice | | |
 | Ms Calhoun measures the heights of students in her mathematics class. She is interested to see if the mean height of male students, $\mu 1$, is the same as the mean height of female students, $\mu 2$. The information is recorded in the table. | Male height (cm) | 150 | 148 | 143 | 152 | 151 | 149 | 147 | | |--------------------|-----|-----|-----|-----|-----|-----|-----|-----| | Female height (cm) | 148 | 152 | 154 | 147 | 146 | 153 | 152 | 150 | At the 10% level of significance, a t-test was used to compare the means of the two groups. The data is assumed to be normally distributed and the standard deviations are equal between the two groups. (a) - (i) State the null hypothesis. - (ii) State the alternative hypothesis. [2] (b) Calculate the p-value for this test. [2] (c) State, giving a reason, whether Ms Calhoun should accept the null hypothesis. | ro | 1 | |----|---| | 14 | ı | | | | The following diagram shows part of the graph of f(x) = (6-3x)(4+x), $x \in \mathbb{R}$. The shaded region R is bounded by the x-axis, y-axis and the graph of f. (a) Write down an integral for the area of region R. PRACTICE [1] [2] (b) Find the area of region R. The three points A(0, 0), B(3, 10) and C(a, 0) define the vertices of a triangle. (c) Find the value of a, the x-coordinate of C, such that the area of the triangle is equal to the area of region *R*. [2] | (Question 10 continued) | |--| ······································ | | ······································ | | ······································ | | ······································ | | ······································ | | | | | | EXAM PAPERS PRACTICE | | Concept | Find the volume of this log. Helen is building a cabin using cylindrical logs of length $2.4\,\mathrm{m}$ and radius $8.4\,\mathrm{cm}$. A wedge is cut from one log and the cross-section of this log is illustrated in the following diagram. |
 | | | | 1 | | W | | | ٠. | | | // | | ٠. | | | 1 | | • | • |
 |
 | ٠. | ٦. | 4 | ٠.١ |
 | ۴. |
٠. | | • | | ₹. |
 | | |------|---|-----|----------|-------|--------|-------|-------|------|----|----|------|----|---|--------|--|---|---|----|---|-------|--------|------|----|----|---|-----|--------|----|--------|----|--------|----|----|------|--| |
 | 0 | 000 | hi
Lu | er (1 | e peci | . (1) | 9.5 k | ee • | | ٠. |
 | | |
 | | | | | | |
 |
 | | | | |
 | |
 | |
 | | |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | ٠ |
٠. | | • | | ٠. | | |
٠. | | | | | |
٠. | |
٠. | ٠. |
 | ٠. | ٠. |
 | | |
 | | | | | | | | ٠. | | ٠. |
 | ٠. | |
٠. | | • | | | | |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
٠. | | ٠. |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | |
٠. | | • | | | |
• |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
 | ٠. | ٠. |
 | | |
 | | | | | | | | ٠. | | ٠. |
 | ٠. | |
٠. | | • | | | | |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
٠. | | ٠. |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | |
٠. | | • | | | |
• |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
 | ٠. | ٠. |
 | | |
 | | | | | | | | ٠. | | ٠. |
 | ٠. | |
٠. | | • | | | | |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
٠. | | ٠. |
 | | |
 | | | | | | | | | | ٠. |
 | ٠. | |
 | | | | | | |
 | | | | | |
 | |
٠. | |
 | | ٠. |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | |
٠. | | | | ٠. | | |
 | | | ٠. | | |
٠. | |
٠. | |
 | | ٠. |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | |
٠. | | | | ٠. | | |
 | | | ٠. | | |
٠. | |
٠. | |
 | | ٠. |
 | | |
 | | | | | | | | | ٠. | ٠. |
 | ٠. | |
٠. | | • | | | |
• |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
 | ٠. | ٠. |
 | | |
 | | | | | | | | ٠. | | ٠. |
 | ٠. | |
٠. | | • | | | | |
 | | | ٠. | | |
٠. | |
٠. | ٠. |
٠. | | ٠. |
 | | |
 | | | | | | | | | | ٠. |
 | ٠. | |
 | | | | | | |
 | | | | | |
٠. | |
 | |
 | | |
 | | |
 | | | | | | | | | | ٠. |
 | | |
 | | | | | - |
- |
 |
 | | | | |
 | |
٠. | ٠. |
 | ٠. | ٠. |
 | 12. | [Maximum | ı mark: 6 | ı | |-----|----------|-----------|---| Jae Hee plays a game involving a biased six-sided die. The faces of the die are labelled -3, -1, 0, 1, 2 and 5. The score for the game, X, is the number which lands face up after the die is rolled. The following table shows the probability distribution for X. | Score x | -3 | -1 | 0 | 1 | 2 | 5 | |---------|----------------|----|----------------|----------------|----------------|----------------| | P(X=x) | $\frac{1}{18}$ | p | $\frac{3}{18}$ | $\frac{1}{18}$ | $\frac{2}{18}$ | $\frac{7}{18}$ | | | | | | | 7 | | |----------|----------------------------|-----------------------|-----------------|--------|-------|-----| | (a) | Find the exact value of p | | | | | [1] | | Jae | Hee plays the game once. | | | | | | | (b) | Calculate the expected s | core. | | | | [2] | | Jae | Hee plays the game twice | and adds the | two scores toge | ether. | | | | (c) | Find the probability Jae H | lee has a tota | I score of –3. | | | [3] | | <u>E</u> | ХДМ Р | APE | RS F | PRA | CTICE | | © Self Lore Eigen Bucket | 13. | [Maximum mark: 6] | | |---------|--|-----------| | Mr Bu | rke teaches a mathematics class with 15 students. In this class there are 6 female | | | studer | nts and 9 male students. | | | Each o | day Mr Burke randomly chooses one student to answer a homework question. | | | | | | | (a) Fin | nd the probability that on any given day Mr Burke chooses a female student to | | | answe | er a question. | [1] | | In the | first month, Mr Burke will teach his class 20 times. | | | (b) Fin | nd the probability he will choose a female student 8 times. | [2] | | (c) Fin | nd the probability he will choose a male student at most 9 times. | [3] | | | | | | | | | | | | | | | | . | | | EXAM PAPERS PRACTICE | | | | Copyright - 40 SNS and Express Photogram - 10 Expres | Ollie has installed security lights on the side of his house that are activated by a sensor. The sensor is located at point C directly above point D. The area covered by the sensor is shown by the shaded region enclosed by triangle ABC. The distance from A to B is 4.5m and the distance from B to C is 6m. Angle AĈB is 15⁰. | (a) Find CÂB. | [3] | | | | | | | | | | | |---|-----|--|--|--|--|--|--|--|--|--|--| | Point B on the ground is 5m from point E at the entrance to Ollie's house. He is 1.8m tall and s standing at point D, below the sensor. He walks towards point B. | | | | | | | | | | | | | (b) Find the distance Ollie is from the entrance to his house when he first activates the sensor. | [5] |