

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Mark Scheme

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY

AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Mark Scheme

Answer 1.

a) To calculate the relative atomic mass of boron:

•
$$A_r B = \frac{(10 \times 20) + (11 \times 80)}{100}$$
; [1 mark]

A_r B = 10.8; [1 mark]

[Total: 2 marks]

 The relative atomic mass of an element can be calculated by using the relative abundance values using the following equation:

• The relative abundance of an isotope is either given or can be read off the mass spectrum

b) To calculate the relative atomic mass of potassium:

Total abundance = 130.6 + 9.4 = 140; [1 mark]

$$A_r = \frac{(39 \times 130.6) + (41 \times 9.4)}{140} = 39.1 / 39.14; [1 mark]$$

[Total: 2 marks]

- © 2024 Described of the atoms
 - Since the data can be presented to you in different ways, take your time to make sure you have the correct values in the correct place in the equation
 - In this calculation, you are using information from the mass spectrum which shows the relative abundance
 - Therefore, you need to use 140 as the total abundance, not 100%

- c) The equation for the formation of the molecular ion of octane and its m / e value are:
 - $C_8H_{18} \rightarrow C_8H_{18}^+ + e^-$; [1 mark]
 - m/e = (8 x 12) + (18 x 1) = 114; [1 mark]

[Total: 2 marks]

- · The molecular ion is formed by losing one electron
- Since the mass of an electron is negligible, the molecular ion will have the same mass as the molecule itself
- d) There is also a smaller peak at m/e = 59.0 on the mass spectrum of butane because of:
 - Carbon-13 / ¹³C isotopes; [1 mark]
 - Which adds a mass of 1 onto the molecular ion / causes an M + 1 peak; [1 mark]

[Total: 2 marks]

- Most carbon atoms are carbon-12
- However, approximately 1.1% of all carbon atoms are carbon-13
- This means that there is a chance that one (or potentially more) of the carbon atoms in butane
 will have a mass of 13 instead of 12

Copyright

- © 2024 Exam Papers Practice e) The alkane that will have a higher [M+1] peak is
 - Octane

AND

(Because,) it contains more carbon atoms; [1 mark]

[Total: 1 mark]

- The M+1 peak appears due to the presence of carbon-13 atoms
- Since octane has more carbon atoms, there is a greater chance of one atom being carbon-13 which results in a larger M+1 peak

- e) The difference in the ratio of the M⁺ peak to the [M+2] peak in 1-bromobutane and 1-chlorobutane would be:
 - In 1-chlorobutane, the ratio of M+: [M+2] would be 3:1; [1 mark]
 - In 1-bromobutane, the ratio of M+: [M+2] would be 1:1; [1 mark]

[Total: 2 marks]

- Both chlorine and bromine exist as two isotopes:
 - o 35Cland 37Cl
 - ³⁵Clis 3 times more abundant than ³⁷Cl
 - o 79Br and 81Br
 - Their relative abundances are the same.
- Compounds containing one Clatom will have an M⁺ peak due to the ³⁵Cl isotope and a [M+2] peak due to ³⁷Cl
 - The M+ peak is 3 times higher than the [M+2] peak
 - This is because the ³⁵Cl isotope is 3 times more abundant than ³⁷Cl
- Compounds containing one Br atom will have an M⁺ peak due to the ⁷⁹Br isotope and a [M+2] peak due to ⁸¹Br
 - The M+ and the [M+2] peak heights are the same
 - This is because the abundances of the isotopes are the same

EXAM PAPERS PRACTICE

Answer 2.

Copyright

a) It can be shown that compound X contains 6 carbon atoms by:

- n = (100 / 1.1) x (6.5 / 100); [1 mark]
- So n = 5.91 so there are 6 carbon atoms; [1 mark]

[Total: 2 marks]

- The peaks shown in the diagram are the 2 which are greater than 100, so the peak at m/e = 102 is the molecular ion peak and the peak at m/e = 103 is the [M+1] peak caused by the carbon-13 isotope, which makes up for approximately 1.1% of all carbon atoms
- The number of carbon atoms, n, in a compound is deduced from the following formula:

$$n = \frac{100 \times \text{abundance of [M+1]}}{1.1 \times \text{abundance of M+ ion}}$$

• The abundance of [M+1] = 6.5 and the abundance of M⁺ ion = 100, so:

$$n = \frac{100 \times 6.5}{1.1 \times 100} = 5.91$$

so n = 5.91, rounding this gives 6 carbon atoms

b) The molecular formula of X is:

F102-(6x12) = 30 so C₆H₁₄O:[1 mark] ERS PRACTICE

[Total: 1 mark]

- (a) The Indiecularion peak of surface alue that corresponds to the molecular mass of the compound
 - So, the molecular mass of compound X is 102
 - It has 6 carbons which have a mass of 6 x 12 = 72
 - The remaining mass must be due to hydrogen and oxygen
 - 0.02 72 = 30
 - Oxygen has a mass of 16, so there can only be 1 oxygen atom within the compound (as 2 oxygen atoms would have a combined mass of 32, which is too large)
 - The remaining mass must be due to hydrogen atoms:
 - 0 30 16 = 14
 - As the mass of a hydrogen atom is 1, there must be 14 carbon atoms

c) The molecular formula of the fragment of X at m / e = 31 is:

(CH₂OH)⁺; [1 mark]

[Total: 1 mark]

- Think about some common fragments that could be found within a compound containing carbon, hydrogen and oxygen, and their m/e values:
 - o CH₃+=15
 - \circ CH₂+ = 14
 - o OH+ = 17
- Then think about what combination of these fragments would give an m / e value of 31
- CH₂OH⁺ would give a value of 14 + 17 = 31

- d) The functional group present in X is:
 - A hydroxy group because of a (broad) peak at 3300
 AND

One oxygen atom is present in the molecular formula; [1 mark]

EXAM PAPERS PRACTICE

- The infra-red spectrum shows a broad peak at around 3300 cm⁻¹ which corresponds to a
 Chydroxyl group or carboxyl group
- ① The Carboxyl group a Solt contains 2 oxygen atoms and the hydroxyl group, -OH, contains 1 oxygen atom
 - Compound X cannot contain the carboxyl group as it only has 1 oxygen atom, therefore it must contain a hydroxyl group

Answer 3.

a) The relative abundance of the isotopes is:

isotope	relative abundance
²⁴ Mg	78-79
²⁵ Mg	10
²⁶ Mg	11-12

All three values correct; [1 mark]

[Total: 1 mark]

- A range is given to allow for the readability of the diagram, but the values must add up to 100% to score the mark
- b) The relative atomic mass, A_r , of magnesium to two decimal places is:

[Total: 1 mark] Copyright

- To find the relative atomic mass multiply the abundance by the isotopic mass for each isotope and sum the result
- Don't forget you need to convert the percentage to a decimal or the answer will need to be divided by 100
- c) The full electronic configuration of the magnesium ion, ²⁶Mg²⁺.
 - 1s²2s²2p⁶; [1 mark]

[Total: 1 mark]

- Don't be fooled by the question asking you for the electronic configuration of an isotope the isotopic mass is irrelevant
- You need to subtract two electrons from the atom to achieve the configuration of the +2
 ion

d) Deducing the relative abundance of each isotope of boron:

•
$$10.8 = \frac{10x + 11(100 - x)}{100}$$

OR

10x + 1100 - 11x = 1080; [1 mark]

- $\therefore x = 1100 1080 = 20$; [1 mark]
- Isotope 1 / 10 relative abundance = 20

AND

Isotope 2 / 11 relative abundance = 80; [1 mark]

[Total: 3 marks]

- If the relative atomic mass is of boron is 10.8 we can take an average of the % abundances and make them equal to the relative atomic mass
- The two isotopes must have respective atomic masses of 10 and 11 as the relative atomic mass is 10.8
- · We know that

- The relative abundances must add up to 100
- GONA/Can then put these numbers into the equation
- © 2024 <u>Exami(199a per</u>s Practice
- The isotope which has a mass of 10 has an abundance of 20%, as x is equal to 20
- The isotope which has a mass of 11 has an abundance of 80%, as 100-x is equal to 80

Answer 4.

- a) The evidence to support that compound X is a hydrocarbon is:
 - Infrared peak at (roughly) 2950 cm⁻¹ for C-H bonds; [1 mark]
 - No other functional groups present in the infrared spectrum; [1 mark]

[Total: 2 marks]

- Use your exam technique to help answer this question, two marks suggests:
 - Two comments about the infrared spectrum
 - Two comments about the mass spectrum
 - One comment about each spectrum
- This question is two comments about the infrared spectrum:
 - One comment to directly show how the IR spectrum supports the hydrocarbon conclusion
 - The peak at 2950 cm⁻¹ is for C-H bonds
 - One comment to indirectly show how the IR spectrum supports the hydrocarbon conclusion
 - No other functional groups present

b) The mass spectrum supports that compound **X** has a molecular formula of C₄H₁₀ because:

Control on / M+ peak at m/e 58

© 2009 Exam Papers Practice C4H10 has a relative molecular mass / Mr of 58; [1 mark]

[Total: 1 mark]

 Careful: Be sure to state the supporting piece of evidence AND how it supports the conclusion

c) The displayed formulae of two possible isomers for compound X are:

Both structures correct; [1 mark]

[Total: 1 mark]

- C₄H₁₀ is the molecular formula for butane
- Butane has only one isomer which is methylpropane

d)

i) The fragment ions in the mass spectrum are:

• m/z15 = CH₃t; [1 mark] APERS PRACTICE • m/z 29 = C₂H₅t; [1 mark]

• m/z 43 = C₃H₇+; [1 mark] Copyright

®**2024•EXis**m Papers Practice

Butane

AND

The fragment ions support / prove that compound \mathbf{X} / the hydrocarbon is a straight chain; [1 mark]

[Total: 4 marks]

- These fragment ions are some of the more basic ones that you can be expected to know
- Careful: Don't forget the + charge or you will lose the mark(s)

Answer 5.

- a) To calculate the molecular formula of compound B:
 - Moles of carbon = 5.80

AND

Moles of oxygen = 1.16

AND

Moles of hydrogen = 11.7; [1 mark]

Ratio of carbon: oxygen: hydrogen is 5:1:10

AND

Therefore, the empirical formula is C₅H₁₀O; [1 mark]

Molecular formula = C₅H₁₀O

AND

Because the empirical formula has a mass of 86 which corresponds to the M+1 peak at m/z = 87; [1 mark]

[Total: 3 marks]

- . This question contains all the little tricks that examiners can do:
 - Not giving you all of the percentages and expecting you to deduce the missing percentage

Percentage of hydrogen = 100 - 69.7 - 18.6 = 11.7 % Giving you the elements out of the standard, and almost expected, order

O Not giving you the specific mass of the unknown compound - although you should be able copyright.

Open to getermine this from the M+1 peak information

© 2024 Example Papers Relactice

Element	С	0	Н
Value from question	69.7	18.6	11.7
Ar	12.0	16.0	1.0
Moles	$\frac{69.7}{12.0} = 5.80$	$\frac{18.6}{16.0} = 1.16$	$\frac{11.7}{1.0} = 11.7$
Ratio	$\frac{5.80}{1.16} = 5$	$\frac{1.16}{1.16} = 1$	$\frac{11.7}{1.16}$ = 10.09

- Therefore, the empirical formula is C₅H₁₀O
- $C_5H_{10}O$ has a molar mass of $(12.0 \times 5) + (1.0 \times 10) + 16.0 = 86.0$
- This means that C₅H₁₀O would have an M+1 peak at m / e = 87.0

- b) Two possible structures for compound B are:
 - Pentan-2-one

AND

Pentan-3-one; [1 mark]

Explanation:

The (sharp) IR peak at 1705 cm⁻¹ corresponds to a carbonyl group / C=O
 AND

Which suggests / could be an aldehyde or a ketone; [1 mark]

The fragment ion peak at m / e = 28 can only come from a C=O fragment

AND

Pentanal cannot (easily) form this fragment; [1 mark]

[Total: 3 marks]

- Using a combination of the molecular formula of C₅H₁₀O and the IR peak at 1705 cm⁻¹, you should be able to determine pentanal, pentan-2-one and pentan-3-one as the only possible isomers
- The fragment ion peak at m / e = 28 removes pentanal as a possibility because it cannot (easily)
 form that fragment ion

Copyright

c) The fragment responsible for the mass spectrum peak at m / e = 29 is:

C₂H₅⁺; [1 mark]

How it can be used to distinguish between the two isomers:

Pentan-2-one can only form one (C₂H₅⁺) fragment
 AND

Pentan-3-one can only form two (C₂H₅⁺) fragments; [1 mark]

Therefore, pentan-2-one will have a lower relative abundance of the (C₂H₅⁺) fragment

OR

Therefore, pentan-3-one will have a higher relative abundance of the (C₂H₅⁺) fragment; [1 mark]

[Total: 3 marks]

- **Remember:** A mass spectrum gives m / e data which can be used to identify potential fragment ions, but the size of the peaks can also give an indication of how much there is of each peak
 - Pentan-2-one can only form one peak at m / e = 29
 - Due to its symmetry, pentan-3-one can essentially form 2 peaks at m / e = 29
 - Therefore, you could expect the m/e = 29 peak to be higher (potentially double) for pentan-3-one

EXAM PAPERS PRACTICE

Copyright

Answer 6.

- a) To calculate the molecular formula of alcohol E:
 - Moles of carbon = 5.68

AND

Moles of hydrogen = 13.6

AND

Moles of oxygen = 1.14; [1 mark]

Ratio of carbon: hydrogen: oxygen is 5:12:1

AND

Therefore, the empirical formula is C₅H₁₂O; [1 mark]

• M_r of the empirical formula = $(5 \times 12.0) + (12.0 \times 1) + 16.0 = 88.0$

AND

Therefore, the molecular formula is C₅H₁₂O; [1 mark]

[Total: 3 marks]

· Part (i) is a standard empirical formula calculation

Element	C/	Н	0	
Value from question	68.2	13.6	18.2	_
EAX A M	Р Д12.0 Е	RS 1.DR	△ 16.0	E
Moles Copyright	$\frac{68.2}{12.0} = 5.68$	$\frac{13.6}{1.0} = 13.6$	$\frac{18.2}{16.0} = 1.14$	
© 2924 Exam Pap	ers 17.68 17.68 = 1.180 17.68 = 1.180	$\frac{13.6}{1.14} = 11.93$	$\frac{1.14}{1.14} = 1$	

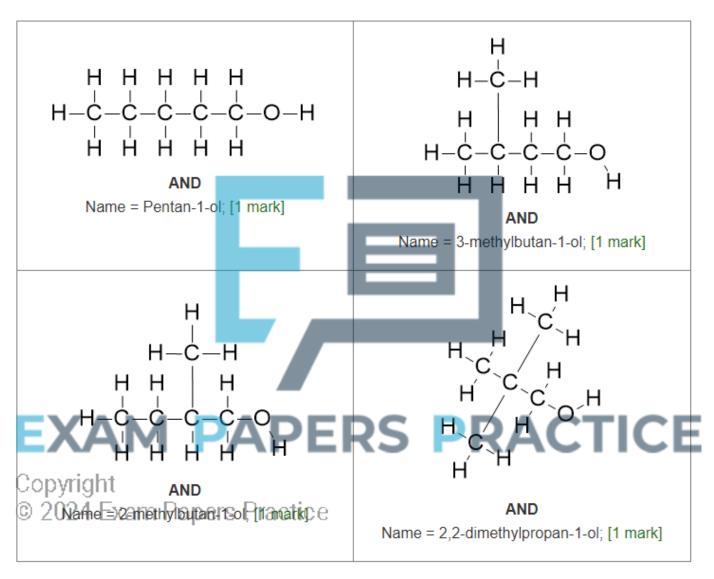
- Therefore, the empirical formula is C₅H₁₂O
- . Careful: Don't assume that the empirical formula is the molecular formula
 - Use the molecular ion m / e value of 88 to determine if the empirical formula is the molecular formula
 - In this instance, the molecular and empirical formulae are the same
 - Without this check, you will lose a mark

b) The information this tells us about the structure of alcohol E is:

• It is a primary / 1° alcohol; [1 mark]

[Total: 1 mark]

- Remember:
 - Primary alcohols are oxidised to aldehydes and then carboxylic acids
 - Secondary alcohols are oxidised to ketones
 - o Tertiary alcohols can't be further oxidised



EXAM PAPERS PRACTICE

Copyright
© 2024 Exam Papers Practice

c) The fully displayed formulae and names of the **four** possible structural isomers that could be alcohol **E** are:

[Total: 4 marks]

- Take your time drawing the four structural isomers and naming them correctly:
 - From part (c), you are drawing structural isomers of primary alcohols so don't be tempted to draw secondary or tertiary structures
 - o Always double check they are in fact isomers and not the same molecule
 - o Take care with the naming rules as without a name you will not be awarded the full marks
- Apart from pentan-1-ol, you can also score the mark by giving a name that does not include the -1-, e.g. 3-methylbutanol
 - This is because the alcohol group is fixed at carbon 1
 - This means that the molecule is numbered from carbon-1, which is the carbon with the alcohol group

d) The structure of the species that could give a major peak at m / e = 45.

AND

Copositive charge included in the diagram; [1 mark]

© 2024 Exam Papers Practice

[Total: 1 mark]

- Take your time deducing the fragment ion
 - It will be linked to one of the isomers that you have just drawn so you are best starting with the CH₂OH which is common to all of the isomers
 - This has a mass of 31
 - This leaves a mass of 14, which is a CH₂ group
 - Therefore, the fragment is CH₂CH₂OH
 - Remember: The question asks for the fragment ion which is CH₂CH₂OH⁺

- e) The identity of alcohol E is:
 - 3-methyl-butan-1-ol

AND

This is the only alcohol with a branched chain that forms $CH_2OHCH_2^+/C_2H_4OH^+/$ peak at 45.0; [1 mark]

[Total: 1 mark]

There are three branched structural isomers:

EXAM PAPERS PRACTICE

Copyright

a)

i) To determine whether compound **F** is a carbohydrate according to the previous chemistry definition:

Percentage of carbon = 55.81 (%)

AND

Moles of carbon = 4.65; [1 mark]

Moles of hydrogen = 6.98

AND

Moles of oxygen = 2.34; [1 mark]

Ratio of carbon: hydrogen: oxygen is 2:3:1

AND

Therefore, the empirical formula is C₂H₃O; [1 mark]

Compound F is not a carbohydrate according to the previous chemistry definition
 AND

Because the number of hydrogen and oxygen atoms does not match the H_2O / $(H_2O)_n$ in the general formula; [1 mark]

ii) The answer to part (i) cannot be the molecular formula of compound F because:

The number of hydrogens is not possible for a complete / fully bonded molecule

OR

Cornering edules possible with two carbon atoms and one oxygen atom have an incorrect number

© 2002dp@natomPlajmerts Practice

Plus any three of the following:

	Displayed formula	Justification, in terms of hydrogen atoms	
	H C=C=0 H	Not enough hydrogen atoms	; [1 mark]
	H-C-C=0 H H	Too many hydrogen atoms	; [1 mark]
	н- <u>Ć-</u> С-н н н	Too many hydrogen atoms	; [1 mark]
Co	H H XIA C H pyright H		RMCTICE
© :	2024 Fxam Papers F Н-С-С-О-Н Н Н	ractice Too many hydrogen atoms	; [1 mark]

[Total: 8 marks]

- For part (i)
 - This question gives you the elements out of the standard, and almost expected, order
 - You also have to calculate the missing percentage:
 - Percentage of hydrogen = 100 6.98 37.21 = 55.81 %
 - To calculate the empirical formula:

Element	С	Н	0
Value from quest	on 55.81	6.98	37.21
A_{r}	12.0	1.0	16.0
Moles	55.81 = 4.65	6.98 = 6.98	$\frac{37.21}{16.0} = 2.34$
WIOIO3	12.0	1.0	16.0
Ratio	$\frac{4.65}{2.34} = 1.99$	$\frac{6.98}{2.34} = 2.98$	$\frac{2.34}{2.34} = 1$

- Therefore, the empirical formula is C₂H₃O
- It is the H₂O portion of the general formula C_m(H₂O)_n that is important
 - The number of carbon atoms, m, is independent of the hydrogen and oxygen atoms
 - The (H₂O)_n portion shows that there must always be a ratio of 2 hydrogen atoms: 1 oxygen atom
 - The H₃O portion of the empirical formula cannot satisfy this ratio
 - Therefore, compound F cannot be a carbohydrate according to the previous chemistry

PAPERS PRACTICE

This is a challenging variation of determining isomer structures

Copyrige extra guidance of this question provides a very big clue but is hard to spot

- © 2024 Eyesking Your pinswer in terms of hydrogen atoms, you are able to place the carbon and oxygen atoms in any position that you wish and then add hydrogen atoms
 - Therefore, you should be drawing three different and complete displayed formulae that contain two carbon atoms, one oxygen atom and enough hydrogen atoms to satisfy all the bonds within the molecule
 - However you try this, it is not possible to have two carbon atoms, one oxygen

- b) To deduce the molecular formula of compound F:
 - $M_{\rm r}$ of the empirical formula of compound **F** = 43.0

AND

 M_r of compound $\mathbf{F} = 86.0$; [1 mark]

• $\frac{86.0}{43.0} = 2$

AND

The molecular formula of compound \mathbf{F} is $C_4H_6O_2$; [1 mark]

[Total: 2 marks]

- The spectrum shows a large peak at m / e = 86.0 which corresponds to the molecular ion of compound F
 - Therefore, the M_r of compound F is 86.0
- The empirical formula of compound F is C₂H₃O
 - The M_r of the empirical formula = $(12.0 \times 2) + (1.0 \times 3) + 16.0 = 43.0$
- Dividing the M_r of compound F by the M_r of the empirical formula tells you how many empirical formula pieces are required to get the molecular formula
 - $\circ \frac{86.0}{43.0} = 2$, which means that there are 2 empirical formula pieces in the molecular

EXECUTED PRACTICE

Copyright

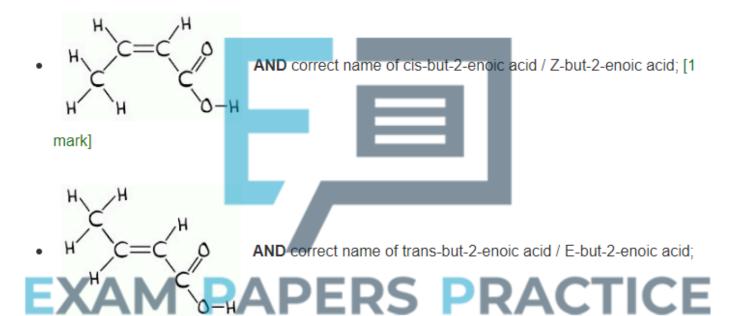
c) The completed table is:

principal absorptions in infra-red spectrum	bond responsible
2500 - 3000 cm ⁻¹	Carboxyl OH OR Carboxylic acid
1710 cm ⁻¹	Carboxyl CO / C=O OR Carboxylic acid
1620 cm ⁻¹	C=C OR Alkene

All bonds responsible correct; [1 mark]

[Total: 1 mark]

- This question just requires you to look the values up in the table
- · Careful: Some of the peaks require specific answers
 - For the peak at 2500 3000 cm⁻¹, you must specify if it is an alcohol OH bond or a carboxylic acid / carboxyl OH bond
 - For the peak at 1710 cm⁻¹, you must specify if it is a carbonyl CO bond or a carboxylic acid / carboxyl CO bond


EXAM PAPERS PRACTICE

Copyright

d) The displayed formulae and names of the three possible isomers that could be compound F are:

AND correct name of but-3-enoic acid; [1 mark]

Cobynight ស្រួស្នា១24a្គ្រីស្នាកា Papers Practice

- From parts (b) and (c), you should have determined that compound F:
 - Has a molecular formula of C₄H₆O₂
 - Contains a carbon=carbon double bond / C=C
 - Contains a carboxylic acid group / –COOH
- Tip: When building / deducing organic structures, leave the hydrogen atoms to last as they
 essentially finish off the molecule
- If you start with the carboxylic acid group / –COOH
 - COOH
 - · This leaves you with three carbons
- Attach a second carbon to the carboxylic acid group / –COOH
 - Due to the bonds that form the carboxylic acid group, this new bond must be a carboncarbon single bond
 - -C-COOH
 - This leaves you with two carbons
- The question tells you that compound F is a straight-chain molecule
 - This means that the remaining carbons must attach consecutively to the second carbon
 - C-C-C-COOH
- You know that there is a carbon=carbon double bond / C=C somewhere in the chain
 - As previously discussed, it cannot go between carbon-1 and carbon-2

e It could go between carbon-2 and carbon-3

Copyright This forms but-2-enoic acid which exhibits geometrical isomerism

- © 2024 Exam Papers Practice
 - It could, alternatively, go between carbon-3 and carbon-4
 - C=C-C-COOH
 - This structure is called but-3-enoic acid and does not exhibit geometrical isomerism
- Remember: When you draw your final answers, make sure that you have all the appropriate
 hydrogen atoms in place or you will lose a mark
 - Careful: Make sure that all of the carbons, especially the alkene carbons, have the correct number of bonds
 - It is very common to accidentally add an extra hydrogen atom making 5 bonds around the alkene carbon atoms

e) Compound F is:

cis-but-2-enoic acid

AND

The arrangement of functional groups around the carbon=carbon double bond / C=C reduces the intermolecular / van der Waals forces (meaning less energy is required to overcome the forces); [1 mark]

[Total: 1 mark]

- The three isomers identified in part (d) are:
 - But-3-enoic acid
 - cis-but-2-enoic acid
 - trans-but-2-enoic acid
- There are two types of stereoisomers:
 - Geometrical (cis-trans) isomerism
 - Optical isomerism
- Compound F cannot be but-3-enoic acid as this does not show stereoisomerism
 - The carbon=carbon double bond / C=C has two hydrogen atoms attached to one of the carbons so it cannot show geometrical isomerism
 - There are no chiral centres so it cannot show optical isomerism
- This means that compound F is either cis-but-2-enoic acid or trans-but-2-enoic acid
 They both have hydrogen bonding and van der Waals forces
 - o The shapes of the molecules will affect the van der Waals forces
- Copyright shape of the cis-isomer means that it has a smaller surface area
- © 2024 Excated Capital ar Proposition van der Waals forces
 - Weaker van der Waals forces mean that less energy is required to overcome the forces, resulting in a lower boiling point