

GCE

Further Mathematics A

Y535/01: Additional pure mathematics

AS Level

Mark Scheme for June 2024

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2024

Y535/01

Questio n	Answer	Marks	AO	Guidance
1	$28A3B_{12} = 11 + (3 \times 12) + (10 \times 12^2) + (8 \times 12^3) + (2 \times 12^4)$	M1	1.1	DR Use of powers of 12 with $A = 10$ and $B = 11$. Condone one error in the expansion of powers of 12. Values of A and B can be implied by correct answer below.
	= 56783	A1	1.1	
		[2]		

Question		Answer	Marks	AO	Guidance
2	(a)	Attempt at vector product of their a and b : $\begin{pmatrix} 2 \\ 4 \\ 9 \end{pmatrix} \times \begin{pmatrix} 3 \\ -4 \\ 6 \end{pmatrix}$	M1*	1.1	Must be clear that it is the vector product being attempted. Can be implied by two correct components. If using Area $\triangle OAB = \frac{1}{2} \mathbf{a} \mathbf{b} \sin\theta$, attempt at $ \mathbf{a} $, $ \mathbf{b} $ and θ via the scalar product.
		$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 60\\15\\-20 \end{pmatrix}$	A1	1.1	Or $\mathbf{b} \times \mathbf{a}$ If using Area $\triangle OAB = \frac{1}{2} \mathbf{a} \mathbf{b} \sin \theta $, $ \mathbf{a} = \sqrt{101}$, $ \mathbf{b} = \sqrt{61}$, $\theta = 55.9 \dots^{0}$
		$ \mathbf{a} \times \mathbf{b} = \sqrt{60^2 + 15^2 + (-20)^2}$	M1dep*	1.1	Attempt at the magnitude of their $\mathbf{a} \times \mathbf{b}$ soi Or Area $\triangle OAB = \frac{1}{2}\sqrt{101} \times \sqrt{61} \sin 55.9 \dots^0$
		Area $\triangle OAB = \frac{1}{2} \mathbf{a} \times \mathbf{b} = \frac{65}{2}$ (square units)	A1	1.1	Triangle formula used CAO
			[4]		

<u>Y535/01</u>		Mark Sch	neme		June 2024	
Question		Answer	Marks	AO	Guidance	
2	(b)	$\begin{pmatrix} 2\\4\\3\lambda \end{pmatrix} \times \begin{pmatrix} \lambda\\-4\\6 \end{pmatrix} = \begin{pmatrix} 24+12\lambda\\3\lambda^2-12\\-8-4\lambda \end{pmatrix} = 0$	M1	1.1	Vector product attempted and result equated to 0 . Allow sign errors. Condone calculation of only one correct component equated to 0 leading to $\lambda = -2$.	
		$\lambda = -2$	A1	1.1	A check that remaining two components are 0 is required. www	
		ALT. Want $\mathbf{b} = m\mathbf{a}$ (or $\mathbf{a} //\mathbf{b}$) and attempt at $m = \frac{\lambda}{2} = \frac{-4}{4} = \frac{6}{3\lambda}$	M1			
		$\lambda = -2$	A1			
			[2]			

Quest	tion	Answer	Marks	AO	Guidance
3	(a)	$f_x = 8xy - 6y^2 - \frac{1}{3}x^3$	B1	1.1	
		$\mathbf{f}_{y} = 4x^2 - 12xy$	B1	1.1	
		$f_y = 0 \implies x = 3y$ (Noting $x \neq 0$ not required)	M1	1.1	Establishing a relationship between <i>x</i> and <i>y</i> by setting one first partial derivative to zero
		$f_x = 0 \implies 8.3y.y - 6y^2 - \frac{1}{3}.27y^3 = 0$	M1	1.1	Substituting correctly for first variable in second partial derivative set to zero and solving attempt of some cubic polynomial
		$\Rightarrow b = 2$	A1	1.1	Second variable value CAO
		$\Rightarrow a = 6$ and $c = 36$	A1	1.1	Both remaining values correct Condone <i>x</i> , <i>y</i> , <i>z</i> for <i>a</i> , <i>b</i> , <i>c</i> throughout

Y535/01	7535/01 Mark Sche				June 2024
Question		Answer		AO	Guidance
			[6]		
(b)	i	At U_1 , $x = 5.9$, $y = 2$, $f_x = 1.94$ (= 8 × 5.9 × 2 - 6 × 2 ² - $\frac{1}{3}$ × 5.9 ³)	B1	1.1	
		At $U_{2, x} = 6.1, y = 2,$ $f_x = -2.06 (= 8 \times 6.1 \times 2 - 6 \times 2^2 - \frac{1}{3} \times 6.1^3)$	B1	1.1	If B0B0 , SCB1 for both correct substitutions
			[2]		
	ii	At $V_{1, x} = 6, y = 1.9,$ $f_{y} = 7.2 (= 4 \times 6^{2} - 12 \times 6 \times 1.9)$	B1	1.1	
		At $V_{2, x} = 6, y = 2.1,$ $f_{y} = -7.2 (= 4 \times 6^{2} - 12 \times 6 \times 2.1)$	B1	1.1	If B0B0 , SCB1 for both correct substitutions
			[2]		
	iii	\bigcirc -shaped parabola on an <i>x</i> - <i>z</i> set of axes labelled or implied by an equation in (<i>x</i> , <i>z</i>) or (<i>x</i> , f(<i>x</i> ,2))	B1	1.1	Condone positional vaguenesses
		\cap -shaped parabola on a <i>y</i> - <i>z</i> set of axes labelled or implied by an equation in (<i>y</i> , <i>z</i>) or (<i>y</i> , f(6, <i>y</i>))	B1	1.1	Ditto
			[2]		

535/01	5/01 Mark S			June 2
Questio n	Answer	Marks	AO	Guidance
4 (a)	$ \begin{array}{c} F_{n+1} = F_n + F_{n-1} & F_{n+4} = F_{n+3} + F_{n+2} \\ F_{n+2} = 2F_n + F_{n-1} & = 2F_{n+2} + F_{n+1} \\ F_{n+3} = 3F_n + 2F_{n-1} & = 3F_{n+1} + 2F_n \\ \text{or} \end{array} $	M1 2.1	2.1	Fibonacci recurrence relation used correctly at least twice
	$F_{n+4} = 5F_n + 3F_{n-1}$	A1 [2]	2.2a	CAO If M0 , SCB1 for trial and error with F_r and F_s checked for $r, s \ge 6$
(b	When $n = 4$, $F_4 = 3$ which is a multiple of 3 so result is true (or $n = 8$, $F_8 = 21$)	B1	1.1	Basic case
	Assume the result is true for $n = k$, where k is a multiple of 4 (or $n=4k$) Therefore $F_k = 3N$ (or $F_{4k} = 3N$) where N is a positive integer or F_k (or F_{4k}) is a multiple of 3 Using part (a), $F_{k+4}(F_{4k+4}) = (their 5) F_r + (their 3) F_s$, r, s in terms of k, $4k - 4 < r$, $s < 4k + 4$, $r \neq s$ $F_{k+4} = 3(5N + F_{k-1})$ or $F_{4k+4} = 3(5N + F_{4k-1})$ which is also a multiple of 3	M1	2.1	Clearly reasoned inductive step (no need to note that all terms are integers)
	Since $F_4 = 3$ is a multiple of 3 and F_k a multiple of 3 when k is a multiple of $4 \Rightarrow F_{k+4}$ a multiple of 3, it follows by induction that F_n is always a multiple of 3 if n is a multiple of 4	A1	2.4	Fully correct conclusion with consistent use of subscripts www

Y535/01 Mark Sc			Scheme		
Questio n	Answer	Marks	AO	Guidance	
		[3]			

Que	estion	Answer	Marks	AO	Guidance
5	(a)	$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1	1.2	No need to observe that $det(\mathbf{I}) = 1$ Accept \mathbf{I}
			[1]		
	(b)	G consists of the powers of P , which has order 6	B1	2.4	oe such as $\mathbf{P}^6 = \mathbf{I}$. Can be implied by explicit calculation of \mathbf{P}^6 . Or recognising that \mathbf{P} is a clockwise rotation through 60°. Allow unsupported statement and without mention that no lower power of \mathbf{P} gives \mathbf{I} .
		(n =)6	B 1	2.2a	
			[2]		
	(c) i	$\mathbf{Q}^{2} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix} (=\mathbf{R}\mathbf{Q}\mathbf{R})$	B1	1.1	
		$QR = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix} \text{ or } RQ = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}$	B1	1.1	
		$QR = RQ^2$ and $RQ = Q^2R$	B 1	1.1	
		$\mathbf{Q} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, \mathbf{R} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \text{ I and } m = 6$	B1	2.2a	All six elements must be seen (explicitly as matrices or in terms of \mathbf{Q} and \mathbf{R}) and no others for this B1 . (Condone failure to note that $\mathbf{Q}^3 = \mathbf{R}^2 = \mathbf{I}$.)

35/01	Mark Sc	June			
Question	Answer	Marks A		Guidance	
		[4]			
(c) ii	One of $\{\mathbf{R}, \mathbf{I}\}$ (or $\{\mathbf{R}, \mathbf{R}^2\}$), $\{\mathbf{Q}, \mathbf{Q}^2, \mathbf{I}\}$ (or $\{\mathbf{Q}, \mathbf{Q}^2, \mathbf{Q}^3\}$), $\{\mathbf{Q}\mathbf{R}, \mathbf{I}\}$, $\{\mathbf{R}\mathbf{Q}, \mathbf{I}\}$	B1	2.2a	One correct subgroup	
	Another correct subgroup.	B1	1.2		
	All correct and no others.	B1	1.1	Ignore $\{I\}$ and/or <i>H</i> if mentioned. Alternative forms may be used or matrices given instead. Condone absence of brackets.	
		[3]			
5 (d)	True : Cvclic \Rightarrow Abelian, so G is Abelian	B1	2.4		

5	(d)	True : Cyclic \Rightarrow Abelian, so <i>G</i> is Abelian or All powers of a single element commute \Rightarrow Abelian	B1	2.4	
		True : <i>G</i> is cyclic, generated by P	B 1	2.5	Each an annat have a valid massar summaring it
		False : <i>H</i> is not Abelian, since (e.g.) $\mathbf{QR} \neq \mathbf{RQ}$	B 1	2.2a	Each answer must have a valid reason supporting it
		False : Not Abelian \Rightarrow not cyclic, so <i>H</i> is not cyclic or There is no generator in <i>H</i>	B1	2.4	
			[4]		

<u>Y535/01</u>			Mark Sch	eme		June 2024	
Quest	Question		Answer		S AO	Guidance	
6	(a)	i	$n = 9k + 3$ and $n = 9k + 6$ or $n=3 \pmod{9}$ and $n=6 \pmod{9}$	B1	1.2	Allow $n = 9k \pm 3$ Condone $9n + 3$ and $9n + 6$ (or $9n - 3$), not $n = 9k + r$	
				[1]			
		ii	For $n = 9k + 3$, $f(n) = 1 + 2^{9k+3} + 4^{9k+3} = 1 + 8 \cdot (2^9)^k + 64 \cdot (2^9)^{2k}$	M1	3.1 a	Writing 2^{r+3} as $2^r \times 2^3$ and 4^{r+3} as $4^r \times 4^3$	
			$2^9 = 512 \equiv 1 \pmod{73}$	B 1	1.1	Noted or used at any stage NB 262144=512 ²	
			so that $f(n) \equiv 1 + 8. (1)^k + 64. (1)^{2k} \pmod{73}$	M1	3.1 a	Considering $f(n) \mod 73$ by substituting $(2^9)^k$ and $(2^9)^{2k}$ with 1	
			$= 1 + 8 + 64 = 73 \equiv 0 \pmod{73}$ and $f(n)$ is a multiple of 73	A1	3.2a	All correctly concluded	
			Similarly, for $n = 9k + 6$, $f(n) = 1 + 64 \cdot (2^9)^k + 4096 \cdot (2^9)^{2k}$	M1	1.1	Writing 2^{r+6} as $2^r \times 2^6$ and 4^{r+6} as $4^r \times 4^6$ (or suitably modified for $n = 9k - 3$)	
			so that $f(n) \equiv 1 + 64 \cdot (1)^k + 8 \cdot (1)^{2k} = 1 + 64 + 8 = 73$ $\equiv 0 \pmod{73}$ and $f(n)$ is a multiple of 73	A1	3.2 a	From fully correct working, including noting that $4096 \equiv 8 \pmod{73}$ NB $n = 9k + 6$ could be considered first.	
				[6]			
	(b)		If $n = 9k$, then $f(n) = 1 + 512^{k} + (512^{2})^{k}$ or $1 + 512^{k} + (262144)^{k}$	M1	1.1	Correct set up using indices	
			$\equiv 1 + 1^k + (1^2)^k = 3 \pmod{73}$	A1	2.2a	CAO It must be clear that this is always the case If M0 , SC1 substituting $n=9$ and evaluating mod 73 to find 3: $f(9)=1+2^9+4^9$ (=262657) \equiv 3 (mod 73)	
				[2]			

<u> </u>	535/01 Mark Sch			-	June 202
Questio n		Answer	Marks	AO	Guidance
7	(a)	If $E_0 = H_0 = 1200$ and $H_{n+1} = \left(1 - \frac{1}{8}\right) H_n$, then $H_{n+6} = \left(\frac{7}{8}\right)^6 H_n$	B1	3.3	H_n being the hourly amount of enzyme Adequately explained in words and/or symbols.
		and $E_{n+1} = \left(\frac{7}{8}\right)^6 E_n$ plus a 'boost' of 500	B1	2.4	
			[1]		
	(b)	Gen. Soln. is given by $(E_n =) \text{ CS } (+) \text{ PS}$	M1	1.1	Including good attempts at $CS = a \times r^n$ (with 1 arbitrary constant) and $PS = constant$
		$\mathbf{CS} = a \left[\left(\frac{7}{8}\right)^6 \right]^n$	A1	1.1	
		$PS = \frac{500}{1 - (\frac{7}{8})^6}$	A1	1.1	
		Use of $E_0 = 1200$ to evaluate their " <i>a</i> "	M1	3.4	Must be $E_n = CS + PS$ PS must be numerical
		$E_n = \left(1200 - \frac{500}{1 - \left(\frac{7}{8}\right)^6}\right) \times \left(\frac{7}{8}\right)^{6n} + \frac{500}{1 - \left(\frac{7}{8}\right)^6}$	A1	1.1	Allow approximate numerical equivalents; e.g. $292.9 \times 0.4488^{n} + 907.1$
			[5]		
	(c)	$\left(\frac{7}{8}\right)^n$ or $\left(\frac{7}{8}\right)^{6n} \to 0$ as $n \to \infty$	B1	2.4	Condone explanation that $(\frac{7}{8})^n$ or $(\frac{7}{8})^{6n}$ becomes
					small (negligible) as $n \to \infty$.
		$\Rightarrow E_n \rightarrow 907$	B 1	2.2b	Correct to 3sf
			[2]		

Y535/01

Questio n		Answer	Marks	AO	Guidance
7	(d)	From $H_0 = 1200$, the hourly sequence H_n runs 1050, 918.75, 803.91, 703.42, Attaining $H_6 = 538.55 \rightarrow E_1 = 1038(.55)$	M1	3.1 a	DR Breaking the problem down into single 1-hour steps, multiplying by 0.875 each time. Making the jump from the end of the first six-hour period to the start of the second. Sight of 1038(.55) or $1200 \times \left(\frac{7}{8}\right)^6 + 500$ FT their solution from part (b)
		Continuing one hour at a time; so $H_7 = 908.7$, $H_8 = 795.14$, $H_9 = 695.75$, $H_{10} = 608.78$, $H_{11} = 532.68$, $H_{12} = 466.10$ Explaining that, just before the second 500 (mg) is added, the amount of enzyme has fallen below the required minimum	A1	3.5a	Continue as before to H_{12} . Sight of 466(.10) with (numerical) justification. FT their solution from part (b) if their $H_{12} < 500$
		amount, so the experiment's validity has failed	A1 [3]	3.5b	'466<500 so requirement not met'

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

Twitter/ocrexams

/ocrexams

/company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2024 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please <u>contact us</u>.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our Expression of Interest form.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.