

GCE

Further Mathematics A

Y533/01: Mechanics

AS Level

Mark Scheme for June 2024

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2024

MARKING INSTRUCTIONS

PREPARATION FOR MARKING RM ASSESSOR

- 1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: RM Assessor Online Training; OCR Essential Guide to Marking.
- 2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
- 3. Log-in to RM Assessor and mark the **required number** of practice responses ("scripts") and the **number of required** standardisation responses.

MARKING

- Mark strictly to the mark scheme.
- 2. Marks awarded must relate directly to the marking criteria.
- 3. The schedule of dates is very important. It is essential that you meet the RM Assessor 50% and 100% (traditional 40% Batch 1 and 100% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.

4. Annotations

Annotation	Meaning
√and ≭	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
۸	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	

Y533/01 Mark Scheme June 2024

Other abbreviations in mark scheme	Meaning
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

5. Subject Specific Marking Instructions

a. Annotations must be used during your marking. For a response awarded zero (or full) marks a single appropriate annotation (cross, tick, M0 or ^) is sufficient, but not required.

For responses that are not awarded either 0 or full marks, you must make it clear how you have arrived at the mark you have awarded and all responses must have enough annotation for a reviewer to decide if the mark awarded is correct without having to mark it independently.

It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

Award NR (No Response)

- if there is nothing written at all in the answer space and no attempt elsewhere in the script
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark, a picture) which isn't an attempt at the question.

Note: Award 0 marks only for an attempt that earns no credit (including copying out the question).

If a candidate uses the answer space for one question to answer another, for example using the space for 8(b) to answer 8(a), then give benefit of doubt unless it is ambiguous for which part it is intended.

b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e. The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f. We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
 - When a value is **given** in the paper only accept an answer correct to at least as many significant figures as the given value.
 - When a value is **not given** in the paper accept any answer that agrees with the correct value to **3 s.f.** unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.

NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.

Candidates using a value of 9.80, 9.81 or 10 for g should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.

- g. Rules for replaced work and multiple attempts:
 - If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
 - If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
 - if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
- h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors. If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j. If in any case the scheme operates with considerable unfairness consult your Team Leader.

Q	uestion	n Answer	Marks	AO	Gu	idance
1	(a)	$e = \frac{02.8}{4 - 0} = 0.7$	B1	1.1	oe e.g. $\frac{2.8}{4} = 0.7$	B0 for -0.7
			[1]			
	(b)	Impulse on $P = \Delta mv = \pm (2.5 \times 4 - 2.5 \times (-2.8))$	M1	1.1	Finding change in <i>P</i> 's momentum	Allow 1 slip but not wrong sign inside the brackets
		= 17 (Ns)	A1	1.1	Do not allow -17 for magnitude	
		in the direction of <i>P</i> 's final travel oe	B 1	1.1	Could be shown on diagram	Ignore left or right unless qualified,
					(may be seen in part (a))	e.g. with a diagram or further
					Away from the wall	explanation
						Ignore "towards P"
			[3]			
	(c)	17 (Ns)	B1FT	2.2a	FT their magnitude of impulse	Positive value only, ignore units
					from (b)	
		in the opposite direction (to their previous	B 1	2.2a	Direction of P's initial travel	Towards the wall, but not "away
		direction) oe			If "left" mentioned in part (a),	from P"
					then accept "right" as opposite	
					direction.	
					NB If $I = 0$, then award B0B0	
			[2]			

	Question		Answer	Marks	AO	Gui	idance
2	(a)	(i)	$a = \frac{v^2}{r} = \frac{12^2}{1.8} = 80 \text{ (ms}^{-2})$	B1	1.1		
	()	/0.0 \		[1]			
	(a)	(ii)	Towards O	B1FT	1.2	Acceleration in part (a) must be	
						> 0 for this mark	
				[1]			
	(b)	(i)	$v = r\omega = 1.8 \times 8 = 14.4 \text{ (ms}^{-1})$	B 1	1.1		
				[1]			
	(b)	(ii)	$a = r\omega^2 = 1.8 \times 8^2 (= 115.2)$	M1	1.1	Using formula for radial	
			$ => T = ma = 0.4 \times "115.2"$			acceleration and $F = ma$ with	
						tension as only force.	
			=46.1 (N)	A1	1.1	46.08	
				[2]			
	(c)		$KE = \frac{1}{2} \times 0.4 \times \text{``} 14.4 \text{'`'}^2 \text{ (J) } (= 41.472 \text{ J})$	M1	1.1	Finding 'initial' energy	
			"41.472" = 0.4gh	M1	1.1	and equating to final PE.	Allow sin/cos confusion if
						Or = $0.4g \times 20 \sin \theta$	expressing h in terms of θ
			$ > h = 10.579 \text{ so } \theta = \sin^{-1}(10.579/20) =$	A1	1.1	NB as degrees are specified in	SCB2 for $\theta = 31.9^{\circ}$ from a non-
			awrt 31.9(°)			the question, an answer in	energy method e.g. <i>suvat</i> :
						radians (e.g. 0.557) scores A0	$14.4^2 = 2 \times 9.8 \times h = > h = 10.579$
				[3]			$ \begin{array}{c c} 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$

	Questio	n	Answer	Marks	AO	Gu	idance
3	(a)		$[g] = LT^{-2}$	B1	2.5	Notation must be fully correct	M, L, T and nothing else.
			$[T =] (LT^{-2})^{\alpha} L^{\beta} M^{\gamma}$	M1	3.3	Forming a dimensional equation	Do not allow extra terms
						between the quantities with	
						[c] = 1 soi and their $[g]$	
			$\mathbf{M}: \gamma = 0$	B 1	1.1	Allow $\beta = 0$ if using MT ⁻² for	MLT ⁻² may also be seen
						[g]	$(=> \gamma = \frac{1}{2} \text{ later}).$
			L: $\alpha + \beta = 0$ and T: $1 = -2\alpha$	M1	3.4	Equating their $g^{\alpha}l^{\beta}m^{\gamma}$ to T	Allow e.g. $0 = L^{\alpha} + L^{\beta}$ if
						(soi) and deriving equations for	recovered by stating $\alpha + \beta = 0$
						L and T (possibly M and T if g	
			1/ 0 1/	A 1	1 1	is incorrect)	At least one of the tree Managha
			$\alpha = -\frac{1}{2}, \beta = \frac{1}{2}$	A1	1.1	Could be embedded as eg	At least one of the two M marks should be scored for this mark
						$\tau = c \sqrt{\frac{l}{l}}$	Allow A1 if correct values
						$\int \int g$	obtained using MLT ⁻² .
				[5]			obtained using WIL1 .
	(b)	(i)	TAI TI	M1	3.4	Using the model to consider	Could see eg
	(~)	(-)	$\tau' = c \sqrt{\frac{4l}{g}} = 2c \sqrt{\frac{l}{g}}$	1,11		length quadrupling and all other	1 1
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			parameters (except τ) staying	$\tau = cl^{\frac{1}{2}}g^{-\frac{1}{2}}$
						the same (must see $\sqrt{4} = 2$ or	<u>1</u> <u>1</u> <u>1</u> <u>1</u>
						equivalent for <i>their</i> β)	$\tau' = c(4l)^{\frac{1}{2}} g^{-\frac{1}{2}} = 2cl^{\frac{1}{2}} g^{-\frac{1}{2}}$
			So the period (or τ) is doubled.	B1FT	2.2a	or just "so period doubles" oe	SC B1 for "no change" (with
						FT their value of β	reason given) if using MT ⁻² for [g]
							and consistent with their equations
	(7.)	(0.0)		[2]			
	(b)	(ii)	If mass quadruples, there is no change to the	B1	3.5a	Answer must include both	Allow SC B1 for time doubling
			period (or τ) since there is no dependency on			behaviour (no change to period)	(with reason given) if using MT ⁻²
			$m (\gamma = 0)$			and reason (no dependency on	or LMT ⁻² for [g] and consistent
				[1]		m), i.e. not just 'no effect'	with their equations.
				[1]			

Question	Answer	Marks	AO	Gu	idance
4	Method using $P = \frac{WD}{t}$				
	Energy lost to resistance = 12×90 (J)	B 1	1.1	1080	
	Acquired KE = $\frac{1}{2} \times 5 \times 18^2$ (J)	B 1	3.1b	810	
	Acquired PE = $5 \times g \times 90 \times 0.2$ (J)	B1	1.1	90g or 882	Ignore wrong sign
	$90 = \frac{1}{2}(18 + 0)t => t = 10$	M1	3.1b		Or average speed = $\frac{1}{2}(18 + 0)$
	Average power = $("810 + 882 + 1080") / "10"$	M1	1.1	Using Power = WD / time	Allow 1 error e.g. missing energy
				Or Energy/dist x average speed	term or sign error but not extra
	277 (W)	A 1	2.2	277.2	terms
	= 277 (W)	A1 [6]	2.2a	277.2	
		լսյ		Only award marks from one of	e.g. do not award for acceleration if
	Alternative method using $P = Fv$			the two solutions.	seen as part of an energy solution.
	Weight down the slope = $5g \times 0.2$	B 1		9.8N	soon as pare of an energy solution.
	102	B1		1.8ms ⁻² ; no other values of u, v	On finding VE (910)
	$a = \frac{10}{2 \times 90}$	D1		or s allowed.	Or finding KE (= 810)
	$ma = 5 \times "1.8"$	B1FT		9N	Or $ma = \frac{"810"}{90}$
	Average speed = $\frac{1}{2}(18 + 0)$	M1		=9m/s;	, , , , , , , , , , , , , , , , , , ,
				Or $P_{(max)} = (12 + "9.8" + "9") \times$	Allow 1 error e.g. missing energy
				18 (= 554.4)	term or sign error but not extra
				Or $t = \frac{90}{"9"} (= 10s)$	terms
	Average power = $(12 + "9.8" + "9") \times "9"$	M1		Driving force × average speed	Allow 1 error as per above
				Or $P_{av} = \frac{P_{max}}{2} = \frac{\text{"554.4"}}{2}$	
	= 277 (W)	A1		277.2	
		[6]			

Q	uestioi	n Answer	Marks	AO	Guidance	
5	(a)		M1	3.3	Attempt at conservation of	4 terms, each of correct form.
					momentum	Condone 1 error, e.g. sign error
			M1	1.1	Attempt at NEL	Allow 1 error, but not approach
						and separation speeds reversed.
		$m_A u_A + 5(-2) = m_A(-3.25) + 5(0.5)$	A1	1.1	Both equations correct and	FT their value of m_A if substituted
		$\frac{0.5 - (-3.25)}{0.5 - (-3.25)} = 0.75$			consistent with each other	into the COLM equation.
		$u_A - (-2)$				
		$3.75 = 0.75u_A + 1.5 \Rightarrow u_A = \dots$	M1	1.1	Solving to find <i>u</i> _A or <i>m</i> _A	From their attempt at COLM
		$3m_A - 10 = -3.25m_A + 2.5 = 6.25m_A = 12.5$				and/or NEL
		$=>m_{A=}$				
		$u_A=3$	A1	1.1	Both correct, could be BC	Both correct from correct equations
		$m_A=2$				implies the last M1
			[5]			
	(b)	KE Before = $\frac{1}{2} \times "2" \times "3"^2 + \frac{1}{2} \times 5 \times 2^2$	B1FT	1.1	Total KE before (FT their	Allow one slip
		=19 (J)			values for u_A and m_A)	
		KE After = $\frac{1}{2}$ × "2" × 3.25 ² + $\frac{1}{2}$ × 5 × 0.5 ²	M1	1.1		Allow one slip
		= 11.1875 (J)				
		· ·	A1	2.2a		
		% KE Lost = $(1 - \frac{11.1875}{19}) \times 100 = 41.11 \dots$	AI	2.2a		
		Hence $\approx 41\%$ AG				
			[3]			

(c)	$5(0.5) + 3(-5.5) = 5V_B + 3V_C$	M1	1.1	Attempt at conservation of	4 terms, each of correct form.
				momentum	Allow one error
					NB $V_B = -3.25$ may be substituted from the start.
	$e = \frac{V_C - V_B}{0.5 - (-5.5)}$	M1	1.1	Attempt at NEL	Allow one error, but not approach and separation speeds reversed.
	$V_C - V_B = 6e$ and $5V_B + 3V_C = -14$	A1	1.1	Both equations correct and consistent with each other May be unsimplified	Could see e.g. $V_C + V_B$ if assumed to be going in opposite directions, e.g. if V_B is assumed to be negative
	$3V_C - 3V_B = 18e \implies 8V_B = -14 - 18e$	M1	1.1	Solving their two COLM/NEL	Or getting an equation for e if
	$=> V_B = \frac{-14-18e}{8} = \frac{-7-9e}{4}$			equations simultaneously to	$V_B = -3.25$ previously substituted
	-> V _B - 8 - 4			reach an expression for V_B or V_C	A 11 4
				in terms of e only.	Allow 1 error
				$V_C = \frac{-14 + 30e}{8} = \frac{-7 + 15e}{4}$	
	No further collision => $V_B \ge -3.25$ oe	B1	3.1b	Correct condition for no further	Must be consistent with previous
				collision. Condone >,	equations;
				allow '=', but not '<' or "\le "	Award this for substituting
					$V_B = -3.25$ into both equations at the start
	$\frac{-7 - 9e}{4} \ge -3.25 \Longrightarrow -7 - 9e \ge -13$	A1	1.1	Inequality signs must be correct and lower limit of 0 required.	the start
	$\frac{-7 - 9e}{4} \ge -3.25 \Rightarrow -7 - 9e \ge -13$ $\Rightarrow 9e \le 6 \Rightarrow e \le \frac{2}{3}$ But $0 \le e \le 1$ so $0 \le e \le \frac{2}{3}$				
	But $0 \le e \le 1$ so $0 \le e \le \frac{2}{3}$				
		[6]			

Question	Answer	Marks	AO	Gui	dance
6	$P = Fv \Rightarrow 12000 = D \times v_{\text{max}}$	B 1	3.1b	•	Could be embedded in $F = ma$
				"driving force" (D) and	equation. Or $\frac{12000}{10}$ seen (as driving
				maximum speed.	force)
	At maximum speed $D - R = 0$ so	M1	1.1	Statement of $F = ma$ with $a = 0$	Could have value(s) embedded.
	$P/v_{\text{max}} - kv_{\text{max}} = 0$			with $R = kv_{\text{max}}$ used	
	$=>\frac{12000}{10}-10k=0=>k=120$	A1	1.1	$v_{\text{max}} = 10, P = 12000$	May be seen embedded
	$D-R = ma = > \frac{12000}{r} - "120"v = 360 \times 1.5$	M1*	3.1b		May see $v = \frac{12000}{540 + 120v}$ using $v = \frac{P}{D}$
	ν			P = Dv and $R = kv$ and $m = 360$	540+120 <i>v</i> 5 <i>D</i>
	$=> 12000 - 120v^2 = 540v$	M1 J	1 1	and $a = 1.5$ used	
	$=> 12000 - 120v^2 = 540v$ $[=> 2v^2 + 9v - 200 = 0]$	M1dep	1.1	Rearranging to 3-term quadratic equation	
	2v + 9v - 200 - 0 (2v + 25)(v - 8) = 0 = v = 8 [or v = -12.5]	A1	1.1	Both values correct if present,	Could be BC
	(2v + 23)(v - 0) = 0 = v = 0 [01 $v = -12.3$]	711	1.1	A fully correct solution implies	Could be Be
				the previous M mark www	
	But speed must be positive, so speed is 8 (ms ⁻¹)	A1FT	3.2a	-	
				solution explicitly rejected, with	
				valid reason.	
				FT solutions to their quadratic (if	
				a negative solution is validly rejected).	Insufficient explanations:
				rejected).	"Going forward";
				Reason could be that velocity	"Cannot be negative as it is
				and resistive force must be in	accelerating"/"acceleration is in the
				opposite directions (have	positive direction";
				opposite signs).	"a cannot be positive when v is
				Accept reference to scalar nature	negative, because power is
		[7]		of speed	positive";
		[7]			

$I = \Delta mv => 44.1 = 3.5u$ => $u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ Initial KE = ½×3.5×"12.6" ² (= 277.83 J) PE = 3.5 g ×5.4(1 – cos θ)	B1 B1FT M1	3.3 1.1	Use of impulse-momentum principle to find initial speed	
$\text{``277.83''} = 3.5g \times 5.4(1 - \cos\theta)$	M1	3.4	FT their u PE with allowance made for change in height in terms of θ and use of mgh Conservation of energy with final KE set to 0	Could see separate PE terms and/or errors in sign(s) of PE term(s). Allow sin/cos confusion Their initial KE must be > 0
$=>\cos\theta=-\frac{1}{2}=>\theta=2\pi/3$	A1	1.1	or awrt 2.09 (2.09439)	Radians only
Alternative Method $I = \Delta mv => 44.1 = 3.5u$ $=> u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ Initial KE = ½×3.5×"12.6" ² (= 277.83 J) $PE = 3.5g \times \text{h and "277.83"} = 3.5g \times \text{h}$ $\cos \theta = (\pm) \frac{5.4 - "8.1"}{5.4} \text{ oe}$ $\theta = \frac{2\pi}{3}$	B1 B1FT M1 M1 A1		Use of impulse-momentum principle to find initial speed FT their u NB h = 8.1m Or $sin\alpha = \frac{8.1-5.4}{5.4}$ oe (to the horizontal) $\theta = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$	Probably using a diagram NB $\alpha = \frac{\pi}{6}$ Allow sin/cos confusion May be explained by a diagram
$"277.83" = "3.5g \times 5.4(1 - \cos\theta)" + 20 \times k\theta \times 5.4$ $277.83 = 185.22 - 185.22\cos\theta + 108\theta$ $343 + 686\cos\theta = 400\theta$ $343(1 + 2\cos\theta) = 400\theta$	M1 A1	3.4	Applying work-energy principle with their PE and KE and an energy loss term AG. Rearranging convincingly to AG.	FT their previous values; k may be positive or negative, e.g. $\frac{\pi}{180}$ Allow use of h instead of θ
I = 2 => => Initi PE = $\theta = 0$ =	$\Delta mv => 44.1 = 3.5u$ $u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ al KE = ½×3.5×"12.6" ² (= 277.83 J) = 3.5g × h and "277.83" = 3.5g × h $\theta = (\pm) \frac{5.4 - "8.1"}{5.4}$ oe $\frac{2\pi}{3}$ $7.83" = "3.5g×5.4(1 - \cos\theta)" + 20 × k\theta ×$ $83 = 185.22 - 185.22\cos\theta + 108\theta + 686\cos\theta = 400\theta$	$\Delta mv => 44.1 = 3.5u$ $u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ al KE = ½×3.5×"12.6" ² (= 277.83 J) $= 3.5g \times \text{h}$ and "277.83" = 3.5g × h $\theta = (\pm) \frac{5.4 - "8.1"}{5.4}$ oe M1 $\frac{2\pi}{3}$ A1 $\frac{2\pi}{3}$ Signature (5) $\frac{2\pi}{3}$ A1 $\frac{1}{2}$	$\Delta mv => 44.1 = 3.5u$ $u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ al KE = ½×3.5×"12.6" ² (= 277.83 J) $= 3.5g \times \text{h}$ and "277.83" = 3.5g × h $\theta = (\pm) \frac{5.4 - "8.1"}{5.4}$ oe M1 A1 $\frac{2\pi}{3}$ A1 7.83 " = "3.5g×5.4(1 - cos θ)" + 20 × k θ × M1 $83 = 185.22 - 185.22\cos\theta + 108\theta$ $+ 686\cos\theta = 400\theta$ $(1 + 2\cos\theta) = 400\theta$ A1 1.1	$\Delta mv = > 44.1 = 3.5u$ $u = 44.1 / 3.5 = 12.6 \text{ (ms}^{-1})$ al KE = ½×3.5×"12.6" ² (= 277.83 J) $= 3.5g \times \text{h}$ and "277.83" = 3.5g × h $\theta = (\pm) \frac{5.4 - "8.1"}{5.4}$ oe And $\theta = (\pm) \frac{5.4 - "8.1"}{5.4}$ oe And $\theta = (\pm) \frac{\pi}{5.4} = \frac{\pi}{5.4}$ oe (to the horizontal) $\theta = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$ And $\theta = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$ [5] 7.83" = "3.5g×5.4(1 - cosθ)" + 20 × kθ × 83 = 185.22 - 185.22cos θ + 108 θ + 686cosθ = 400θ Use of impulse-momentum principle to find initial speed FT their u NB h = 8.1m Or $sinα = \frac{8.1-5.4}{5.4}$ oe (to the horizontal) $\theta = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$

(c)	Energy lost to resistance = $20 \times 5.4 \times 1.306 \text{ J}$	M1	3.4	Using " $r\theta$ " and 20 to find work	
	(=141.048 J)			done against resistance	
	$141.048 = 3.5 \times 9.8h$	M1	3.4	Using W-E principle (ie lost	
				energy would manifest as more	
				PE)	
	h = 4.11 (m)	A1	1.1	4.112	
	Alternative method:				
	$5.4(1-\cos("2\pi/3"))$ [= "8.1"]	M1		Finding maximum height	Allow sin/cos confusion
				predicted by first model	NB θ = 2.09 gives 8.079
				(may be seen in part (a). Award	
				this mark if re-used in part (c))	
	$5.4(1-\cos(1.306))$ [= 3.986]	M1		Finding maximum height	
				predicted by second model	
 	"8.1" - 3.986 = 4.11(m) (3 sf)	A1		4.09-4.11 (m)	Allow FT of their θ from part (a)
		[3]			
(d)	Take into account the mass and/or weight of	B1	3.5c	Or other sensible improvement.	Ignore using (light inextensible)
	the rod (which is unlikely to be negligible)			eg making resistance to motion	string instead of a rod.
				dependent on speed or account	Ignore gravity as resistive force.
				for rod not being perfectly inextensible etc.	Ignore reference to friction at the hinge.
				Allow reference to size and	Ignore reference to tangential
				shape of the particle, but not just	acceleration or speed.
				a generalisation such as: "do not	Splitting resistance into air
				model as a particle"	resistance and friction must be
				Allow the idea that tension may	justified as an improvement, e.g.
				cause the rod to extend or affect	reference to air resistance not being
				the friction at the hinge, but not	constant, or reason why friction
				just tension on its own.	may not be constant.
				Allow the idea that there could	
				be some spin in particle P or	
				motion in and out of the plane	
		[1]			

Need to get in touch?

If you ever have any questions about OCR qualifications or services (including administration, logistics and teaching) please feel free to get in touch with our customer support centre.

Call us on

01223 553998

Alternatively, you can email us on

support@ocr.org.uk

For more information visit

ocr.org.uk/qualifications/resource-finder

ocr.org.uk

Twitter/ocrexams

/ocrexams

in /company/ocr

/ocrexams

OCR is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored. © OCR 2024 Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee. Registered in England. Registered office The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA.

Registered company number 3484466. OCR is an exempt charity.

OCR operates academic and vocational qualifications regulated by Ofqual, Qualifications Wales and CCEA as listed in their qualifications registers including A Levels, GCSEs, Cambridge Technicals and Cambridge Nationals.

OCR provides resources to help you deliver our qualifications. These resources do not represent any particular teaching method we expect you to use. We update our resources regularly and aim to make sure content is accurate but please check the OCR website so that you have the most up-to-date version. OCR cannot be held responsible for any errors or omissions in these resources.

Though we make every effort to check our resources, there may be contradictions between published support and the specification, so it is important that you always use information in the latest specification. We indicate any specification changes within the document itself, change the version number and provide a summary of the changes. If you do notice a discrepancy between the specification and a resource, please contact us.

Whether you already offer OCR qualifications, are new to OCR or are thinking about switching, you can request more information using our <u>Expression of Interest form</u>.

Please get in touch if you want to discuss the accessibility of resources we offer to support you in delivering our qualifications.