

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed **55 Minutes**

2002

Score /46

Percentage

%

Biology

AQA AS & A LEVEL

Mark Scheme

3.4 Genetic information, variation and relationships between organisms

www.exampaperspractice.co.uk

(a)	PKNJ.			
	(b)	Lutr	ra lutra.	1
	(c)	Bon	e / skin / preserved remains / museums.	1
	(d)	1. 2. 3.	 (Hunting) reduced population size(s), so (much) only few alleles left; Accept bottleneck Otters today from one / few surviving population(s); Accept founder effect Inbreeding. 	
		э.	Allow any two	2 max
	(e)	1.	Population might have been very small / genetic bottleneck;	

- Population might have started with small number of individuals / by one pregnant female / founder effect; Inbreeding. 2.
- 3.

1

Allow any two

2 max

2	(a)	Trar	Translation.		
		(b)	Transfer RNA / tRNA.	1	
		(c)	TAC; UAC.	2	
		(d)	Have different R group. Accept in diagram	1	
		(e)	 Substitution would result in CCA / CCC / CCU; (All) code for same amino acid / proline; Deletion would cause frame shift / change in all following codons / change next codon from UAC to ACC. 	3	

[8]

(a)

(No – no mark) Graph / bar chart only shows number of species, not the name of the species.

(b) (No – no mark)

- 1. Mutations are spontaneous / random;
- 2. Only the rate of mutation is affected by environment;
- 3. Different species do not interbreed / do not produce fertile offspring;
- 4. So mutation / gene / allele cannot be passed from one species to another.

Ignore references to correlation does not prove causation

- (c) 1. Initially one / few insects with favourable mutation / allele;
 - 2. Individuals with (favourable) mutation / allele will have more offspring;
 - 3. Takes many generations for (favourable) mutation / allele to become the most common allele (of this gene).

[8]

3

4

1

4	(a)	1.	 Chromosome is formed of two chromatids; 2. (Because) DNA replication (has occurred); 3. (Sister) chromatids held together by centromere. 	3
		(b)	 Chromosomes in homologous pair; One of each into daughter cells / haploid number. 	2
		(c)	Separation of (sister) chromatids / division of centromere.	1
		(d)	 Independent segregation (of homologous chromosomes); Accept random assortment Crossing over / formation of chiasmata. 	2

[8]

1	X		
	E		
	Э		

(a)

- Change / mutation in base / nucleotide sequence (of DNA / gene); Q. Ignore: references to changing base-pairing Accept: affect for change, if in correct context Accept: changes triplets / codons
 - Change in amino acid sequence / primary structure (of enzyme); Accept: different amino acid(s) coded for
 Q Reject: different amino acids produced / formed / made
 - 3. Change in hydrogen / ionic / disulfide bonds; Accept: references to sulfur bonds
 - 4. Change in the <u>tertiary</u> structure / shape; Neutral: alters 3D structure / 3D shape
 - 5. Change in <u>active site;</u>
 - Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme-substrate complexes form. Accept: no E S complexes form
- (b) 1. Non-SR strain falls more / SR strain falls less / up to 10(µg / cm-3); Must include 10 but only required once in either MP1 or MP2 Ignore: units or absence of This must be a comparative statement
 - 2. Above 10(µg / cm⁻³), SR strain levels out / off <u>and</u> non-SR strain continues to decrease;
 - 3. Greater difference between strains with increasing concentration of antibiotic.

This must be a comparative statement

6

- (c) 1. Division stopped (of both strains by scientist); Reject: references to mitosis stopping
 - 2. SR strain still more resistant / fewer die / none die (at higher concentrations of antibiotic).

Accept: SR strain and non-SR strain would be similar if

resistance is due to only stopping division Need some comparison with non-SR

- (d) 1. Make a competitive / non-competitive inhibitor; *Mark in pairs either MP1 <u>and</u> MP2 OR MP3 <u>and</u> MP4*
 - Competitive competes with / blocks active site / non-competitive inhibitor affects / changes <u>active site;</u> Do not mix and match

OR

(Make a drug) that inhibits / denatures / destroys enzyme / stringent response;

Accept: drug that 'knocks out' / destroys enzyme

4. Give at the same time as / before an antibiotic.

2 max

(e) (SR strain)

- 1. Fewer free radicals (than non-SR); Note: has to be comparative statement
- 2. Produces more catalase (than non-SR); Accept converse statements for non-SR.
- Catalase (might be) linked to production of fewer free radicals / breaking down / removing free radicals.
 Accept: hydrolysis of radicals by catalase.

[15]

3