

Fields and Their Consequences

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Time allowed 60 Minutes

Time allowed the contract of

60 minutes

MARK SCHEME AND SCHEME AND SCHEME

Gravitational Fields

Physics

Mark Scheme

AQA AS & A LEVEL 3.7 Fields and their consequences (A-level only)

Percentage

 $\frac{0}{0}$

www.exampaperspractice.co.uk

Score

/50

(a) (i)
$$
h (= ct) (= 3.0 \times 10^8 \times 68 \times 10^{-3}) = 2.0(4) \times 10^7 \text{ m (1)}
$$

 \bullet

(ii)
$$
g = (-)\frac{GM}{r^2}
$$
 (1)
\n $r = 6.4 \times 10^6 + 2.04 \times 10^7) = 2.68 \times 10^7$ (m) (1)
\n(allow C.E. for value of *h* from (i) for first two marks, but not 3rd)

4

$$
g = \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{(2.68 \times 10^7)^2}
$$
 (1) (= 0.56 N kg⁻¹)

(b) (i)
$$
g = \frac{v^2}{r}
$$
 (1)
\n $v = [0.56 \times (2.68 \times 10^7)]^{\frac{5}{2}}$ (1)
\n $= 3.9 \times 10^3 \text{ m s}^{-1}$ (1) $(3.87 \times 10^3 \text{ m s}^{-1})$
\n(allow C.E. for value of *r* from a(ii)

[or
$$
v^2 = \frac{GM}{r} = (1)
$$

\n
$$
v = \left(\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{2.68 \times 10^7}\right)^{1/2}
$$
\n(1)
\n= 3.9 × 10³ m s⁻¹ (1)]

(ii)
$$
T\left(=\frac{2\pi r}{v}\right) = \frac{2\pi \times 2.68 \times 10^7}{3.87 \times 10^3}
$$
 (1)
= 4.3(5) × 10⁴s (1) (12.(1) hours)
(use of v = 3.9 × 10³ gives T = 4.3(1) × 10⁴ s = 12.0 hours)
(allow C.E. for value of v from (1)

[alternative for (b):

(i) $v\left(\frac{2\pi r}{T}\right) = \frac{2\pi \times 2.68 \times 10^7}{4.36 \times 10^4}$ (1) $= 3.8(6) \times 10^{3}$ m s⁻¹ (1)]

(allow C.E. for value of r from (a)(ii) and value of T)

(ii)
$$
T^2 = \left(\frac{4\pi^2}{GM}\right)r^3
$$
 (1)
\n
$$
\left(=\frac{4\pi^2}{6.67\times10^{-11}\times6.0\times10^{24}}\times(2.68\times10^7)^3\right) = (1.90\times10^9 \text{ (s}^2) \text{ (1)}
$$
\n
$$
T = 4.3(6)\times10^4 \text{ s (1)}
$$

5

[9]

M3. (a) orbits (westwards) over Equator **(1)** maintains a fixed position relative to surface of Earth **(1)** period is 24 hrs (1 day) or same as for Earth's rotation **(1)** offers uninterrupted communication between transmitter and receiver **(1)** steerable dish not necessary **(1)**

(b) (i)
$$
G \frac{Mm}{(R+h)^2} = m w^2 (R+h)
$$
(1)

use of
$$
w = \frac{2\pi}{T}
$$
 (1)

(ii) gives
$$
\frac{GM}{(R+h)^3} = \frac{4\pi^2}{T^2}
$$
, hence result (1)

(iii) limiting case is orbit at zero height i.e. $h = 0$ (1)

$$
T^{2} = \left(\frac{4\pi^{2} R^{3}}{GM}\right) = \frac{4\pi^{2} \times \left(6.4 \times 10^{6}\right)^{3}}{6.67 \times 10^{-11} \times 6.0 \times 10^{24}} \text{ (1)}
$$

T = 5090 s (1) (= 85 min)

(c) speed increases **(1)**

loses potential energy but gains kinetic energy **(1)**

[or because $v^2 \propto -$ from $\frac{\Delta P E M}{r^2} = \frac{mv}{r}$]

[or because satellite must travel faster to stop it falling inwards when gravitational force increases]

[11]

Max 3

6

2

M4. (a) period is 24 hours (or equal to period of Earth's rotation) **(1)** remains in fixed position relative to surface of Earth **(1)** equatorial orbit **(1)**

same angular speed as Earth (or equatorial surface) **(1)**

max 2

(b) (i)
$$
\frac{GMm}{r^2} = m\omega^2 r(1)
$$

\n
$$
T = \frac{2\pi}{\omega} (1)
$$
\n
$$
r \left(= \frac{GMT^2}{4\pi^2} \right) = \left(\frac{6.7 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2}{4\pi^2} \right)^{1/3} (1)
$$
\n(gives r = 42.3 x 10³ km)

(ii)
$$
\Delta V = GM \left(\frac{1}{R} - \frac{1}{r} \right) (1)
$$

= 6.67 × 10⁻¹¹ × 6 × 10²⁴ × $\left(\frac{1}{6.4 \times 10^6} - \frac{1}{4.23 \times 10^7} \right)$
= 5.31 × 10⁷ (J kg⁻¹) (1)

$$
\Delta E_p = m \Delta V (= 750 × 5.31 × 10^7) = 3.98 × 10-10 J (1)
$$

(allow ecf for value of ΔV)

6

(c) (i) signal would be too weak at large distance **(1)** (or large aerial needed to detect/transmit signal, or any other acceptable reason) the signal spreads out more the further it travels **(1)** (ii) **for** road pricing would reduce congestion stolen vehicles can be tracked and recovered uninsured/unlicensed vehicles can be apprehended **against** road pricing would increase cost of motoring possibility of state surveillance/invasion of privacy **(1)(1)** any 2 valid points (must be for both for **or** against)

[12]

4

M2. (a) force of attraction between two point masses (or particles) **(1)** proportional to product of masses **(1)**

inversely proportional to square of distance between them **(1)**

[**alternatively**

quoting an equation, $F = \frac{GM_1M_2}{r^2}$ with all terms defined (1) reference to point masses (or particles) **or** r is distance between centres **(1)**

F identified as an attractive force **(1)**]

max 2

(b) (i) mass of larger sphere
$$
M_{L} = \frac{4}{3}\pi r^3 \rho = \frac{4}{3}\pi \times (0.100)^3 \times 11.3 \times 10^3
$$
 (1)
= 47(.3) (kg) (1)

[**alternatively**

use of
$$
M \propto r^3
$$
 gives $\frac{M_L}{0.74} = \left(\frac{100}{25}\right)^3$ (1) (= 64)
and $M_L = 64 \times 0.74 = 47(.4)$ (kg) (1)]

2

2

(ii) gravitational force
$$
F\left(=\frac{GM_L M_s}{x^2}\right) = \frac{6.67 \times 10^{-11} \times 47.3 \times 0.74}{0.125^2}
$$
 (1)
= 1.5 x 10⁻⁷ (N) (1)

(c) for the spheres, mass \propto volume (or \propto r³, or $M = \frac{1}{6}\pi r^3 \rho$) **(1)** mass of either sphere would be 8 × greater (378 kg, 5.91 kg) **(1)** this would make the force 64 × greater **(1)** but separation would be doubled causing force to be 4 × smaller **(1)** net effect would be to make the force (64/4) = 16 × greater **(1)** (ie 2.38 × 10⁻⁶ N) **max 4**

[10]

M1. (a) work done/energy change (against the field) per unit mass **(1)** when moved from infinity to the point **(1)**

(b)
$$
V_{E} = -\frac{GM_{E}}{R_{E}}
$$
 and $V_{M} = -\frac{GM_{M}}{R_{M}}$ (1)
\n $V_{M} = -G \times \frac{M_{E}}{81} \times \frac{3.7}{R_{E}} = \frac{3.7}{81} V_{E}$ (1)
\n= 4.57 x 10⁻² x (-63) = -2.9 MJ kg⁻¹ (1) (2.88 MJ kg⁻¹)

(c)

limiting values (–63,–V_M) on correctly curving line **(1)** rises to value close to but below zero **(1)** falls to Moon **(1)** from point much closer to M than E **(1)**

max 3

2

3

[8]