| Please check the examination details bel | ow before ente | ering your candidate information | |--|--------------------|----------------------------------| | Candidate surname | | Other names | | Centre Number Candidate No Pearson Edexcel Inter | | nal GCSE (9–1) | | Time 1 hour 15 minutes | Paper
reference | 4CH1/2CR | | Chemistry | | 0 0 | | Unit: 4CH1 | | | | PAPER: 2CR | | | | | | | | You must have:
Calculator, ruler | | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. - Show all the steps in any calculations and state the units. ## **Information** - The total mark for this paper is 70. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## **Advice** - Read each question carefully before you start to answer it. - Write your answers neatly and in good English. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ # The Periodic Table of the Elements | 0 | 4 He helium 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |---|----------------------|---|------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|---| | 7 | | 19
fluorine
9 | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but not | | 9 | | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ive been rep | | 5 | | 14 N nitrogen 7 | 31
Pophosphorus | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209 Bi bismuth 83 | s 112–116 ha
authenticated | | 4 | | 12
C carbon
6 | 28 silicon 14 | 73
Ge
germanium
32 | 119
Sn
th
50 | 207 Pb lead 82 | Elements with atomic numbers 112–116 have been reported but not fully authenticated | | က | | 11
boron
5 | 27
Al
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T
thallium
81 | ents with ato | | | ' | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercuny
80 | Elem | | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium | | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds damstadtium 110 | | | | | | 59
Co cobalt
27 | 103
Rh
rhodium
45 | 192 Fr iridium 77 | [268] Mt meitnerium 109 | | | 1
Hydrogen | | | 56
iron
26 | Ru
ruthenium
44 | 190
Os
osmium
76 | [277] Hs hassium 108 | | | | | _ | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | | mass
ɔol
ıumber | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relatir
atc
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | | | | 45
Sc
scandium
21 | 89 × yttrium 39 | 139
La *
Ianthanum
57 | [227]
Ac*
actinium
89 | | 2 | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226] Ra radium 88 | | ~ | | 7
Li
Ilthium
3 | 23
Na
sodium
11 | 39
7
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223] Fr francium 87 | | | | | | | <u></u> | <u></u> | | ^{*} The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. ## **Answer ALL questions.** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . | 1 | (a) | Two | substances | are | needed | to | cause | iron | to | rust. | |---|-----|-----|------------|-----|--------|----|-------|------|----|-------| |---|-----|-----|------------|-----|--------|----|-------|------|----|-------| Name these two substances. (2) (b) The box gives the names of some substances. calcium copper gold iodine methane zinc Use words from the box to answer these questions. (i) Give the name of a non-metallic element. (1) (ii) Give the name of a compound. (1) (iii) Give the name of the metal that is lowest in the reactivity series. (1) (Total for Question 1 = 5 marks) - **2** Crude oil is a mixture of hydrocarbons. - (a) This passage is about the industrial separation of crude oil. Complete the passage by adding the missing words. (3) Crude oil is _____ to form vapour. The vapour is passed through a _____ column. The refinery gases are collected at the top of the column because they have low (b) Bitumen is collected at the bottom of the column. Give one use of bitumen. (1) (c) One of the hydrocarbons in crude oil is an alkane with this structural formula. CH₃CH₂CH₂CH₂CH₃ (i) Give the name of this alkane. (1) (ii) Calculate the relative molecular mass (M_r) of this alkane. (1) M. = | (d) Catalytic cracking is used to convert long-chain alkanes into shorter-chain alkane | S. | |---|-------| | Give the name of the catalyst and the temperature used in catalytic cracking. | (2) | | catalyst | | | temperature | | | (e) Catalytic cracking also produces alkenes. | | | Decane $(C_{10}H_{22})$ can undergo cracking to give C_4H_{10} and two different alkenes. | | | Complete the equation for this cracking process. | (2) | | $C_{10}H_{22} \rightarrow C_4H_{10} + \dots + \dots$ | (2) | | $C_{10} \Gamma_{122} \rightarrow C_4 \Gamma_{10} + \dots $ (Total for Question 2 = 10 m) | arks) | **3** A student does a titration to find the concentration of a solution of dilute sulfuric acid. The student uses these solutions and this apparatus. - dilute sulfuric acid - potassium hydroxide solution of concentration 0.240 mol/dm³ - methyl orange indicator | (a) The student wants to find the volume of sulfuric acid needed to neutralise 25.0 cm ³ of the potassium hydroxide solution. | | |--|-----| | Describe how the student should do this titration. | | | Assume that all pieces of apparatus are clean and dry. | (6) | (b) The student needs 15.00 cm³ of sulfuric acid to neutralise 25.0 cm³ of the potassium hydroxide solution. This is the equation for the reaction. $$2KOH + H2SO4 \rightarrow K2SO4 + 2H2O$$ (i) Calculate the amount, in moles, of KOH in 25.0 cm³ of potassium hydroxide solution of concentration 0.240 mol/dm³. (2) (ii) Calculate the amount, in moles, of $\rm H_2SO_4$ in 15.00 cm 3 of the sulfuric acid. (1) amount of $$H_2SO_4 =$$ mol (iii) Calculate the concentration, in mol/dm³, of the sulfuric acid. (2) (Total for Question 3 = 11 marks) **BLANK PAGE** - 4 This question is about alcohols, carboxylic acids and their reactions. - (a) The boxes give some information about a carboxylic acid. Complete the boxes by giving the missing information. (3) | structural formula | CH₃COOH | |--------------------|-------------------| | name | | | | CH ₂ O | | displayed formula | | - (b) Ethanol can be oxidised to produce a carboxylic acid. - (i) Give the names of the two reagents used in this oxidation reaction. (2) (ii) Which of these colour changes occurs during the reaction? (1) - A green to orange - B orange to green - C red to yellow - D yellow to red | (c) Alcohols | and carboxylic acids can be heated together to form esters. | | |---------------|--|-----| | | why it is better to heat the mixture using a water bath rather than ly with a Bunsen burner flame. | (1) | | | | | | (ii) An es | ter has the structural formula CH ₃ CH ₂ COOCH ₃ | | | Which | of these is the name of this ester? | (1) | | | ethyl methanoate | (-/ | | ⊠ B | methyl ethanoate | | | \boxtimes C | methyl propanoate | | | | propyl methanoate | | (Total for Question 4 = 8 marks) - **5** This question is about three stages in the manufacture of sulfuric acid. - (a) In stage 1, sulfur is burned in oxygen to form sulfur dioxide gas. $$S(s) + O_2(g) \rightarrow SO_2(g)$$ (i) State one environmental problem caused by the release of sulfur dioxide into the atmosphere. (1) (ii) A mass of 6.4 tonnes of sulfur is burned to produce sulfur dioxide gas. Calculate the maximum volume, in dm³, of sulfur dioxide gas that can be produced at rtp. [molar volume of sulfur dioxide gas at rtp = $24 \, dm^3$] $[1 \text{ tonne} = 10^6 \text{ g}]$ Give your answer in standard form. (3) $maximum\ volume = \underline{\hspace{1cm}} dm^3$ (b) In stage 2, sulfur dioxide is reacted with oxygen to form sulfur trioxide gas. $$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$ The yield of sulfur trioxide is approximately 98%. (i) A catalyst is used in this reaction. Explain how a catalyst increases the rate of a reaction. (2) (ii) The temperature is kept constant. Give a reason why increasing the pressure would increase the yield of sulfur trioxide. (1) (iii) Suggest why it is not necessary to increase the pressure in stage 2. (1) (c) In stage 3, the sulfur trioxide is reacted with concentrated sulfuric acid to form a liquid called oleum, $H_2S_2O_7$ The oleum is then added to water to form concentrated sulfuric acid. Complete the chemical equations for these two reactions. (2) $$+$$ \rightarrow $H_2S_2O_7$ $$H_2S_2O_7 + \dots \rightarrow \dots$$ (d) Sulfuric acid reacts with ammonia to form ammonium sulfate, (NH₄)₂SO₄ Calculate the percentage by mass of nitrogen in ammonium sulfate. $$[M_r \text{ of } (NH_4)_2SO_4 = 132]$$ (2) percentage = % (Total for Question 5 = 12 marks) | _ | | | |---|---|-----| | 6 | A teacher prepares the insoluble salt lead(II) bromide (PbBr ₂) by mixing solutions of lead(II) nitrate and sodium bromide. | | | | (a) Describe what the teacher should do next to obtain a pure, dry sample of lead(II) bromide. | (3) | | | | (3) | (b) The teacher then sets up a circuit in a fume cupboard using the pure, dry sample of lead(II) bromide. | Explain why the lamp does not light when the lead(II) bromide is solid | |--| |--| (2) (c) The teacher heats the lead(II) bromide. When the lead(II) bromide is molten, the lamp lights and bromine forms at the positive electrode. (i) State what observation would be made at the positive electrode. (1) | (ii) Explain how bromide ions in the molten molecules at the positive electrode. | lead(II) bromide become bromine (4) | |--|--| (d) Write an ionic half-equation for the reaction | that occurs at the negative electrode. | | Include state symbols in your equation. | (2) | | | | | | (Total for Question 6 = 12 marks) | 7 The reaction between hydrogen and chlorine is exothermic. This is the equation for the reaction. $$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$ $\Delta H = -184 \text{ kJ}$ (a) State the meaning of the term **exothermic**. (1) (b) The table gives the bond energies for the H—H and H—Cl bonds. | Bond | Н—Н | H—Cl | |-----------------------|-----|------| | Bond energy in kJ/mol | 436 | 431 | Use the equation and information from the table to calculate the bond energy of the Cl—Cl bond. (4) | | n why this reaction is exothermic.
to bond-breaking and bond-making in your answer. | | |----------|--|------| | | | (3) | (d) Comp | lete the reaction profile diagram to show the position of the products, the | | | | Ipy change (ΔH) and the activation energy (E_a) for the reaction. | (4) | | | \wedge | | | | | | | | | | | | | | | | | | | Energ | У | | | _ | $\frac{H_2 + Cl_2}{$ | (Total for Question 7 = 12 ma | rks) | | | TOTAL FOR PAPER = 70 MA | RKS | # **BLANK PAGE**