

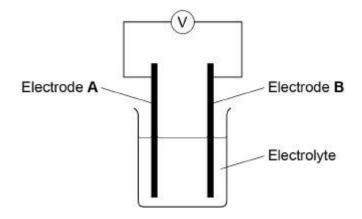
Chemical Cells and Fuel Cells

These practice questions can be used by students and teachers and is suitable for GCSE AQA Chemistry topic Questions 8462

Level: GCSE AQA Chemistry 8462

Subject: Chemistry

Exam board: GCSE AQA


Topic: Chemical Cells and Fuel Cells

Q1.

Chemical reactions can produce electricity.

(a) The diagram below shows a simple cell.

Which of these combinations would not give a zero reading on the voltmeter in the diagram above?

Tick **one** box.

Electrode A	Electrode B	Electrolyte	
Copper	Copper	Sodium chloride solution	
Zinc	Zinc	Water	
Copper	Zinc	Sodium chloride solution	
Copper	Zinc	Water	

	'	1	1
'	١	•	J

Alkaline batteries are non-rechargeable.

(b)	why do alkaline batteries eventually stop working?

•	1	١
١	ı	,

(c) Why can alkaline batteries **not** be recharged?

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.

(a)	Complete the balanced equation for the overall reaction in a hydrogen fuel cell.	
	$\underline{\hspace{1cm}} H_2 \hspace{1mm} + \hspace{1mm} \underline{\hspace{1cm}} \hspace{1mm} H_2 O$	
		(2)

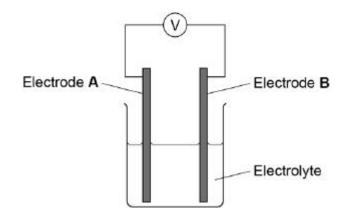
(1)

(e) The table below shows data about different ways to power electric cars.

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes	5	30
Distance travelled before refuelling or recharging in miles	Up to 415	Up to 240
Distance travelled per unit of energy in km	22	66
Cost of refuelling or recharging in £	50	3
Minimum cost of car in £	60 000	18 000

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.

ose the table above and your own knowledge.



(Total 11 marks)

Q2.

A student investigated the voltage produced by simple cells.

The diagram shows the apparatus used.

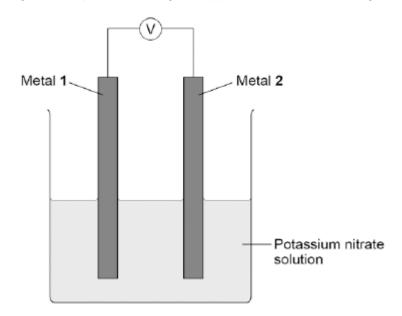
The table shows the voltage produced with different metal electrodes.

Electrode A	Electrode B	Voltage in V
Copper	Copper	0.00
Copper	Iron	0.78
Copper	Magnesium	2.71
Copper	Tin	0.48
Copper	Zinc	1.10

(a)	List the metals in the table in order of reactivity.
	Most reactive

	Locat reactive. Compar	
	Least reactive Copper	
(b)	Batteries consist of cells.	
	Describe how a 6.0 V battery can be made from cells of voltage 1.5 V	
c)	Why do non-rechargeable cells stop producing electricity?	
d)	Complete the word equation for the reaction in a hydrogen fuel cell.	
	hydrogen + → water	
e)	Give two reasons why using a hydrogen fuel cell is seen as non-polluting.	
	Use the equation in part (d). 1	
	2	
		(Total 9 m
مااء -	contain chemicals which react to produce electricity	
a)	contain chemicals which react to produce electricity. Why can a rechargeable cell be recharged?	

·					
alance the half-equation fo ydrogen fuel cell.	or the reac	tion occur	ring at an	electrode	e in one type
H ₂ +	OH-	→ H	20 ⋅	+ e-	
Why is the fuel cell in Quest	ion (c) des	scribed as	an alkali	ne fuel ce	ell?
nother type of fuel cell use				jen.	
he diagram represents the	reaction i	n this fuel	cell.		
H					
2H-C-O-H + 30 H	=0 -	→ 20)=C=	O + 4H	I-О-Н
he table shows the bond en	nergies fo	r the reac	tion.		
	С–Н	С-О	О-Н	0=0	C=O
Bond energy in kJ / mol	412	360	464	498	805
alculate the overall energy	change fo	or the rea	ction.		
	ole above.				
se the diagram and the tab					
se the diagram and the tab					
lse the diagram and the tab					
lse the diagram and the tab					


_____ kJ / mol

Overall energy change = _

Q4.

A student investigated simple cells using the apparatus shown in the figure below.

- If metal 2 is more reactive than metal 1 then the voltage measured is positive.
- If metal 1 is more reactive than metal 2 then the voltage measured is negative.
- The bigger the difference in reactivity of the two metals, the larger the voltage produced.

The student's results are shown in the table below.

Metal 2 Metal 1	Chromium	Copper	Iron	Tin	Zinc
Chromium	0.0 V				
Copper	1.2 V	0.0 V			
Iron	0.5 V	not measured	0.0 V		
Tin	0.8 V	-0.4 V	0.3 V	0.0 V	
Zinc	0.2 V	-1.0 V	-0.3 V	-0.6 V	0.0 V

(a) The ionic equation for the reaction occurring at the zinc electrode in the simple cell made using copper and zinc electrodes is:

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

Zinc is oxidised in this reaction.

Give a reason why this is oxidation.

	table above.
Which one	of the metals used was the least reactive?
Give a reas	on for your answer.
Metal	
Predict the vand copper	oltage that would be obtained for a simple cell that has iron as metal 1 as metal 2 .
Explain you	r answer.
	uel cells have been developed for cars.
Hydrogen fu	
	d equation for the overall reaction that takes place in a hydrogen fuel
Write a word	d equation for the overall reaction that takes place in a hydrogen fuel

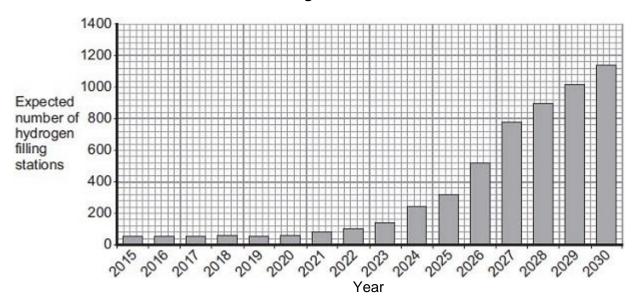
(2) (Total 9 marks)

Q5.

Some cars are powered by hydrogen fuel cells.

Figure 1

© Robert Couse-Baker (CC BY-SA 2.0) via Flickr


(a) What type of energy is released by hydrogen fuel cells?

(1)

(b) Owners of cars powered by fuel cells buy hydrogen from hydrogen filling stations.

Figure 2 shows how the number of hydrogen filling stations in the UK is expected to increase up to the year 2030.

Figure 2

Use the information in **Figure 2** and your own knowledge to answer this question.

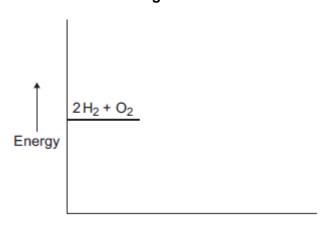
Suggest **two** reasons why the UK government might encourage the building of more hydrogen filling stations.

5 9 9		of hydrogen with oxygen is: + O₂
During th		s used to break the bonds of the reactants.
		bonds are made to form the product.
Bond en	ergies for the reaction	n are given in the table below.
	Bond	Bond energy in kJ
	н—н	436
	0=0	498
	0—Н	464
he stru	ctures of the reactant	s and product are shown in Figure 3 .
		Figure 3
	н—н	0=0 H
	hydrogen	oxygen water
i) Ca	lculate the energy ch	ange for the reaction:
	2 H ₂	+ O ₂ 2 H ₂ O

Energy change = _____ kJ

(3)

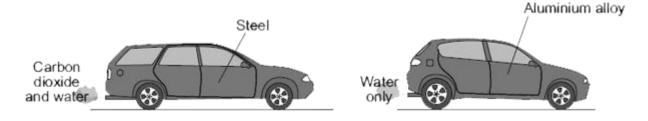
(2)



(ii) The reaction of hydrogen with oxygen is exothermic.

Complete the energy level diagram for this reaction on Figure 4.

Clearly label the activation energy.


Figure 4

(3) (Total 9 marks)

Q6.

The picture shows two different cars.

(a) Some properties of aluminium are given below.

Tick (✓) **two** reasons why aluminium is better than steel for car bodies.

Reason	Tick (√)
Aluminium is not a transition metal.	
Aluminium has a low density.	
Aluminium is expensive to extract.	
aluminium is resistant to corrosion.	

(2)

(b) Each car body is made from an alloy.

(i) What is an alloy?

	(ii)	An alloy is used to n	nake a car bo	dy. A pure	metal i	is not used to make a car	(1)
		Suggest why.					
							/4\
(c)	Th	e car with a steel body	uses petrol fo	or fuel.			(1)
	Dra	aw a ring around the co	rrect answer	to complet	e each	sentence.	
	(i)	Petrol is made from	air.				
	(•)		metal ores.				
				J			(1)
			carbor	nates]		
	(ii)	Petrol is a mixture of	of hydrod	arbons	includ	ding C ₈ H ₁₈	
			polyme	ers			
						_	(1)
				argon			
	(iii)	In the car engine property with	petrol reacts	nitroge	n	to produce carbon dioxide and water.	i
				oxyger	1		
(4)	١٥	ok at the substances c	oming out of a	aab aarla	ovboud		(1)
(d)	(i)		· ·			he aluminium alloy body.	
	(.)						
	(ii)		ed in the car v				(1)
							(4)
						(Total 9 mark	(1) (s)

Mark schemes

Q1.

(a) copper, zinc, sodium chloride solution

1

(b) a reactant is used up

allow the reaction stops allow electrolyte / electrode / ions / metal / metal hydroxide / alkali for reactant

1

(c) the reaction is not reversible

1

(d) $2H_2 + O_2 \rightarrow 2H_2O$ allow fractions / multiples allow 1 mark for O_2

2

(e) **Level 3:** A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

5-6

Level 2: Some logically linked reasons are given. There may also be a simple judgement.

3-4

Level 1: Relevant points are made. This is not logically linked.

1-2

No relevant content

0

Indicative content

reasons why fuel cells could be judged as better

from the table	from other knowledge		
 time for refuelling a fuel cell is faster than recharging or a fuel cell does not need to be recharged a fuel cell has a greater range 	 hydrogen can be renewable if made by electrolysis using renewable energy lithium-ion batteries can catch fire produces only water or no pollutants produced lithium-ion batteries may release toxic chemicals on disposal lithium-ion batteries 		

(eventually cannot be recharged so) have a finite life
mine me

reasons why the lithium-ion battery could be judged as better

from the table	from other knowledge		
 lithium-ion uses energy more efficiently cost of lithium-ion car much less cost of recharging much less than refuelling with hydrogen 	 hydrogen is often made from fossil fuels so is not renewable charging points are more widely available than hydrogen filling stations hydrogen takes up a lot of space or is difficult to store hydrogen can be highly flammable / explosive no emissions produced (catalyst in the hydrogen fuel-cell eventually becomes poisoned so) have a finite life 		

[11]

Q2.

(a) magnesium zinc iron tin (copper)

> three in the correct order scores 1 mark all correct scores 2 marks

(b) use 4 cells (each of voltage 1.5 V)

connect in series

(c) reaction stops

(because) one of the reactants is used up

(d) (hydrogen +) oxygen (→ water)

any two from: (e)

For more help, please our website www.exampaperspractice.co.uk

1

2

1

1

1

1

produces water water is not harmful / polluting does not produce carbon dioxide does not produce other named pollutant allow an answer of only produces water for 2 marks 2 [9] Q3. the chemical reaction is reversible (a) 1 (b) any two from: type of electrode electrolyte concentration of electrolyte temperature 2 **2**OH $^{-}$ \rightarrow **2**H $_{2}$ O + **2** e $^{-}$ (c) allow multiples 1 contains OH- ions (d) 1 (e) (bonds broken) $((6 \times 412) + (2 \times 360) + (2 \times 464) + (3 \times 498)) = 5614$ 1 (bonds made) $((4 \times 805) + (8 \times 464)) = 6932$ 1 (overall energy change) (6932 - 5614) = -1318 (kJ / mol)allow ecf from marking point 1 and / or marking point 2 1 an answer of 1318 (kJ/mol) scores 3 marks [8] Q4.

- (a) (zinc has) lost electron(s) accept loss of electrons
- (b) copper is the least reactive

because it gave the most negative voltage when it was metal 2 or

For more help, please our website www.exampaperspractice.co.uk

1

1

it gave the biggest voltage with chromium

it gave the most positive voltage when it was metal 1

(c) -0.7 V

1

1

The voltage with chromium and copper is 1.2

accept use of other cell pairings such as tin with copper and tin with iron

as with short in a street is 0.5 and some in large and the city (the city of

- The voltage with chromium and iron is 0.5 and copper is less reactive (than iron)
- 1

1

(d) hydrogen + oxygen = water

1

1

(e) $H_2 \rightarrow 2H^+ + 2e^-$

1

$$O_2 \ + \ 4H^+ \ + \ 4e^- \ \rightarrow \ 2H_2O$$

[9]

Q5.

(a) electrical

1

(b) using hydrogen saves petrol / diesel / crude oil allow crude oil is non-renewable ignore hydrogen is renewable

1

using hydrogen (in fuel cells) does not cause pollution accept no carbon dioxide produced allow less carbon dioxide produced allow hydrogen produces only water

1

(c) (i) (-)486

correct answer with or without working gains **3** marks if answer is incorrect:
(2 x 436) + 498 **or** 1370 gains **1** mark

(2 × 436) + 498 **or** 1370 gains **1** mark

4 x 464 **or** 1856 gains **1** mark

correct subtraction of ecf gains 1 mark

3

(ii) products lower than reactants

1

reaction curve correctly drawn

1

		activation energy labelled	1	[9]
Q6. (a)	Alu	minium has a low density	1	
	Alur	minium is resistant to corrosion	1	
(b)	(i)	(an alloy) is a <u>mixture</u> of metals accept (an alloy) can be a metal <u>mixed</u> with another metal or iron <u>mixed</u> with carbon / a non-metal	1	
	(ii)	pure metals are soft allow weak		
		or		
		alloys are hard allow strong / keep their shape ignore rust / corrosion		
		ignore rust/ corrosion	1	
(c)	(i)	crude oil	1	
	(ii)	hydrocarbons	1	
	(iii)	oxygen	1	
(d)	(i)	hydrogen allow H₂ or H	1	
	(ii)	only water is produced (from the fuel)		
		or		
		no carbon dioxide is produced (from the fuel) allow less carbon dioxide produced or less global warming allow carbon dioxide causes global warming	1	[9]