

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Mark Scheme

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY

AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Mark Scheme

Answer 1.

a) Benzene only has one peak in its ¹³C NMR spectrum because:

• All the carbons are equivalent; [1 mark]

[Total: 1 mark]

- This question highlights the need for you to be able to identify equivalent carbon environments
 - This is particularly relevant to symmetrical molecules, especially benzene and its derivatives

b) The number of ¹H peaks that would appear in the low resolution ¹H NMR spectrum of methylbenzene is:

Four / 4; [1 mark]

[Total: 1 mark]

To determine the number of ¹H peaks in a low resolution ¹H NMR spectrum, you have to
decide how many different hydrogens there are in the compound

 \bullet This means identifying the $^1\!H$ nuclei that have different chemical environments Copyright

- The CH₃ group (labelled a) has no neighbouring hydrogens this is one environment
- o There are 5 C-H's in the methylbenzene ring
 - The two C-H groups directly adjacent to the methyl group carbon (labelled b) are equivalent (by symmetry) having one neighbouring hydrogen - this is a second chemical environment
 - The next two C-H groups around the ring (labelled c) are equivalent (by symmetry) having two neighbouring hydrogens, one on either side - this is a third chemical environment
 - The final C-H group directly opposite the methyl group carbon (labelled d) has two neighbouring hydrogens, one on either side - this is the fourth chemical environment
- The key to any NMR questions asking you to identify the number of peaks on a benzene derivative is spotting any symmetry in the molecule
- c) The number of expected peaks in the low resolution ¹H NMR and ¹³C NMR spectra of the three dimethylbenzene isomers are:

Isomer	Number of peaks in ¹ H NMR spectrum	Number of peaks in ¹³ C NMR spectrum	TICE
1,2-dimethylbenzene	3	4	; [1 mark]
1,3 dimethylbenzene	4	5	; [1 mark]
9,4-dimethylbenzene	ers Practice	3	; [1 mark]

[Total: 3 marks]

All three isomers will have at least one more ¹³C peak due to the carbon with the methyl
group that has no hydrogen attached - due to symmetry in the molecules, this only causes
one extra peak

Answer 2.

a)

- i) The structural formula of the standard reference chemical used in ¹H NMR is:
 - Si(CH₃)₄; [1 mark]
- ii) Tetramethylsilane is used as the standard reference chemical because:

Any two of the following:

- It is volatile / has a low boiling point; [1 mark]
- It is non-toxic; [1 mark]
- It is inert; [1 mark]
- It produces one single peak / signal; [1 mark]
- The peak it produces is far to the right / far away from other peaks; [1 mark]

[Total: 3 marks]

- . The question is asking you to suggest the structural formula
 - o Remember: Tetramethylsilane (TMS) is a silicon atom surrounded by four methyl groups
 - Therefore, its structural formula is Si(CH₃)₄
- TMS is used as the standard reference sample against which all other chemical shifts are measured

Copaylit@asta value of 0 ppm

- © 20214villappear Phatre durch estreet in the NMR spectrum
 - It does not interfere with the other peaks
 - It acts as a reference point to which the NMR spectrometer is tuned

b) The number of peaks in the compound 1,3-dichlorobenzene is;

4/Four; [1 mark]

[Total: 1 mark]

 The best way to determine the number of C-13 peaks / environments for 1,3dichlorobenzene is to draw the displayed formula:

- You can then determine the number of peaks by looking at the different positions of the carbon atoms within the molecule:
 - Carbon atoms that are bonded to different atoms or groups of atoms have different environments and will have different chemical shifts
 - If two carbon atoms are positioned symmetrically within a molecule, then they are
- equivalent and have the same environment

 They will absorb radiation at the same chemical shift and contribute to the same peak
- © 2024 Exten Papers Practice

c)

i) The number of peaks on the ¹³C NMR of ethylbenzene is:

• 6/six; [1 mark]

ii) The C-13 chemical shift range for the carbon with an * is:

• $\delta = 110 - 160 \text{ ppm}$; [1 mark]

[Total: 2 marks]

• The number of environments can be shown on the structural formula as shown:

Remember: Look for carbon atoms that are bonded to different groups or positioned symmetrically within the molecule

Peaks 4 and 5 both about the acts of early systems that are sometimes as a simple of the systems of early systems.

Peaks 4 and 5 both show two sets of carbon atoms that are equivalent

Copyright means that have the same chemical environment and will give the same chemical

- 2024 Exam Papers Practice
 Looking at Table 1.1, the carbon with a * next to it will have a shift range of 110 160 ppm, for aromatic carbon atoms within ethylbenzene
 - o The Kekule structure of benzene has been drawn here, which is unusual
 - If you are drawing benzene, while you will usually be allowed to use the Kekule structure, it would be better to use the delocalisation model using a circle to represent the delocalised ring of electrons

Answer 3.

a) The identity of the molecular ions that gives rise to the peak at m/e = 76 is:

C₆H₄+; [1 mark]

[Total: 1 mark]

- Remember: The ion must have a positive charge
 - Without the positive charge, you could lose an exam mark
- The M_r of benzene = $[(6 \times 12.0) + (6 \times 1.0)] = 78$
 - So, a peak at 76 would be caused by C₆H₄[±]

b) The three possible dinitrobenzene isomers of compound A containing a benzene ring are:

- Collaborate ct structure; [1 mark]
- © 2024 Exam Papers Practice [Total: 3 marks]

- The question tells you that you are looking for dinitro isomers
- This means that each isomer must have two nitro / NO₂ groups
- When you place one at the top of the ring / on carbon-1, the second nitro / NO₂ group can be placed:
 - o On carbon-2
 - o On carbon-3
 - o On carbon-4

c) The labelled structures are:

• 1.2-dinitrobenzene:

• 1,3-dinitrobenzene = compound A

[Total: 3 marks]

Copyright

A said in the question compound A has four peaks

1.3-dinitrobenzene has four different carbon environments

The two other isomers have 2 and 3 different carbon environments

Answer 4.

a) To determine the molecular formula of the unknown alcohol is:

- Percentage of oxygen = 21.6%; [1 mark]
- Moles of carbon = 5.41

AND

Moles of hydrogen = 13.5

AND

Moles of oxygen = 1.35; [1 mark]

Ratio of carbon: hydrogen: oxygen is 4:10:1

AND

Therefore, the empirical formula is $C_4H_{10}O$; [1 mark]

The mass of C₄H₁₀O is 74,00

AND

Therefore, the molecular formula is $C_4H_{10}O$; [1 mark]

[Total: 4 marks]

- The important information in this question is that the unknown alcohol contains 64.9% carbon, 13.5% hydrogen and the rest oxygen
- The amount of oxygen can be calculated by 100 64.9 13.5 = 21.6%
- The remainder of the question is a standard empirical formula calculation

Element	С	H	0
Value From question	64.9	13.5	21.6
© 202 4, Exam F	Papersi2: Tractice	1.0	16.0
Moles	$\frac{64.9}{12.0} = 5.41$	$\frac{13.5}{1.0} = 13.5$	$\frac{21.6}{16.0} = 1.35$
Ratio	$\frac{5.41}{1.35} = 4.00$	$\frac{13.5}{1.35} = 10$	$\frac{1.35}{1.35} = 1$

- Therefore, the empirical formula is C₄H₁₀O
- $C_4H_{10}O$ has a mass of $(4 \times 12.0) + (10 \times 1.0) + 16.0 = 74.00$
- This is almost the same as the 74.12 g mol⁻¹ given in the question, which means that the empirical formula is the molecular formula

b)

i) The four possible isomers of the unknown alcohol are:

• (Butan-1-ol)

• (Butan-2-ol)

Copyright
iiiJhenumberof peaksforeachisemerisice

• Butan-1-ol=4peaks

AND

Butan-2-ol = 4 peaks; [1 mark]

• 2-methylpropan-1-ol = 3 peaks

AND

2-methylpropan-2-ol = 2 peaks; [1 mark]

[Total: 6 marks]

- From part (a), the unknown alcohol has a molecular formula of C₄H₁₀O
- Focussing on the carbon chain only, there are 2 possibilities:
 - A four carbon chain backbone
 - o A three carbon chain backbone with a methyl group attached to carbon-2
- From here, you can consider the alcohol group
 - o In both carbon chains, the alcohol group can be attached to carbon-1 or carbon-2
- This gives rise to the four possible isomers; butan-1-ol, butan-2-ol, 2-methylpropan-1-ol and 2-methylpropan-2-ol
- Butan-1-ol and butan-2-ol have no symmetry in their molecules, which means that they
 both have four different carbon environments resulting in 4 peaks on their carbon NMR
 spectra
- In 2-methylpropan-1-ol, the carbon environments are
 - Carbon-1 with the alcohol group attached
 - o Carbon-2
 - The remaining carbons (methyl groups) are both equivalent, which means that they
 give the same peak on the carbon NMR spectrum
- In 2-methylpropan-2-ol, the carbon environments are
 - Carbon-2 with the alcohol group attached
 - The remaining carbons (methyl groups) are all equivalent, which means that they give the same peak on the carbon NMR spectrum

EXAM PAPERS PRACTICE

© The isomer that has produced the chemical shift pattern shown is:

- © 2024 Fram Papers Reactice
 - 0 50 ppm = CH₃-CH₃ group; [1 mark]
 - 50 70 ppm = C-OH group; [1 mark]

[Total: 3 marks]

- For determining which isomer produced the chemical shift pattern, you need to have determined that 2-methylpropan-2-ol forms two peaks (as shown in the spectrum)
- Then you can look at the data table and see that there will be 1 peak for 3 carbon atoms (of the methyl groups) which are all equivalent to one another and one peak for C-OH
- You then just need to quote the values for the shift pattern for the different carbon environments in your answer

Answer 5.

a) The structures of L, M and N are:

- The low carbon-to-hydrogen ratio tells you it must be highly unsaturated or aromatic

 o Therefore, the benzene ring, C₆H₆ is a good starting point
- That leaves two carbons either together or separately joined on the ring
- $\label{eq:paying}$ two remaining carbons together would leave the ring as $C_6H_{5,}$ so the five
- © rental and hydrogens went and the company of the
 - o This option can be eliminated as it would have 6 unique environments due to symmetry:

- Placing the two remaining carbons apart, but joined on the ring separately would leave the ring as C₆H₄, making the two side groups both methyls, -CH₃
 - \circ Next, assign the unique environments to the remaining structures, which have the formula $C_6H_4(CH_3)_2$
 - A line of symmetry through the structures helps to identify which are unique carbon environments:

EXAM PAPERS PRACTICE

Copyright

b) The completed table of proton NMR for L, M and N is:

	Number of peaks	Relative Peak area	
L	2	3:2	; [1 mark]
М	4	6:1:2:1	; [1 mark]
N	3	3:1:1	; [1 mark]

[Total: 3 marks]

- Having deduced the structures of L, M and N in part (a), you can now assign proton
 environments to the structures
 - The protons have been added to the skeletal drawings to make them easier to see:

EXAM PAPERS PRACTICE

- L has two unique proton environments
- COPYTIGE CH3 groups which account for 6 protons in one environment
- © 2024 became Person transfer out the pretons in one environment
 - This gives an overall ratio 6: 4 which simplifies to 3:2
 - M has four unique proton environments
 - The CH₃ groups which account for 6 protons in one environment
 - The benzene C-H accounts for 4 protons in three environments with a ratio of 1:2:1
 - This gives an overall ratio of 6:1:2:1
 - N has three unique proton environments
 - The CH₃ groups which account for 6 protons in one environment
 - The benzene C-H accounts for 4 protons in two environments with a ratio of 2:2
 - This gives an overall ratio of 6:2:2, which simplifies to 3:1:1

c) The isomer with the highest melting point is:

Isomer L; [1 mark]

Explanation:

• Linear molecule packs more easily / closely

AND

Have the strongest intermolecular forces / induced dipole-dipole attractions (as a result of this packing); [1 mark]

[2 marks]

- Molecular packing is the main criterion for determining melting point order
- 1,4- isomers / para-isomers (those with the side groups directly opposite) are symmetrical and fit more easily into a regular repeating structure (lattice)
 - This is similar to the idea of intermolecular forces in branched / non-branched compounds.

Answer & AM PAPERS PRACTICE

Copyright

a) The molecular formula of the compound K is:

• Mole ratio C: H: O =
$$\frac{70.58}{12.0}$$
: $\frac{5.92}{1.0}$: $\frac{23.50}{16.0}$

OR

Mole ratio C:H:O = 5.88:5.92:1.47;[1 mark]

• Empirical ratio C:H:O = $\frac{5.88}{1.47}$: $\frac{5.92}{1.47}$: $\frac{1.47}{1.47}$ OR = 4:4.03:1

AND

- Empirical formula = C₄H₄O; [1 mark]
- Mass of empirical formula = (4x12.0) + (4x1.0) + 16.0 = 68.0

AND

Evidence of m/e = 136 peak in the spectrum

AND

Molecular formula = $C_8H_8O_2$; [1 mark]

[Total: 3 marks]

- Use all the available information to solve the problem
 - o Percentage composition by mass to determine the empirical formula
 - Mass spectrum to determine the molecular formula, in conjunction with your empirical formula calculation
- Showing your steps not only is good practice but also helps you pick up on errors more easily

Copyright

b) The functional groups present in compound K are:

Phenol

AND

pH 5.0 represents a weak acid

AND

There is no reaction with sodium carbonate solution / Na_2CO_3 (aq); [1 mark]

Ketone

AND

The reaction with 2,4-DNPH proves the presence of a carbonyl / C=O group

AND

The negative test with Tollens' reagent suggests it is a ketone / is not an aldehyde; [1 mark]

[Total: 2 marks]

- Qualitative tests / test-tube reactions are often used in conjunction with spectroscopic methods to determine the overall structure of a compound
- So, you need to know all of the functional group tests
 - Careful: The pH 5.0 / no reaction with sodium carbonate solution catches many students out

EXAM PAPERS PRACTICE

Copyright

c) The structure of compound K is:

Explanation:

There are four peaks between 110 - 160 ppm

AND

This means that there are 4 aromatic carbon environments / the molecule is 1,4-disubstituted; [1 mark]

The peak at 190 - 220 for a carbonyl

AND

The peak at 25 - 60 for a carbon next to a benzene ring

AND

This means that there is a ketone group attached to the benzene ring; [1 mark]

[Total: 3 marks]

There is a lot of useful information over all three parts of this question o Part (a)

Convridit Holecular formula C8H8O2

- © 2024 Exam Papers Practice
 - Ketone group
 - o Part (c)
 - Aromatic ring with 1,4 substitution
 - Ketone group attached to the aromatic ring
 - Start with a phenol group with a carbon attached at the 4-position

- This accounts for 7 carbons, one oxygen and 5 hydrogens
- From the molecular formula, this leaves one carbon, one oxygen and three hydrogens to account for
- Make the carbon attached to the ring into a ketone carbonyl (part (c) information) by adding the C=O and a CH₃ group

This structure now accounts for all of the atoms in the molecular formula

PAPERS PRACTICE

Copyright