






# 2.1 Measuring Speed

- 1. To calculate speed, we need to first measure
  - a. <u>Distance</u> travelled between 2 points
  - b. Time taken to travel between these 2 points

#### 2. Definition:

| <u>Speed</u>  | The distance travelled by an object per unit time             |
|---------------|---------------------------------------------------------------|
| Average Speed | The speed calculated from total distance travelled divided by |
|               | total time taken                                              |

3. Formula for speed (can be used to derive another formulas):

$$speed = \frac{dista}{time}nce$$

#### 4. SI Unit for speed

| Quantity | SI Unit               | Other units              |
|----------|-----------------------|--------------------------|
| Distance | Metre, m              | Kilometre, km            |
| Time     | Second, s             | Hour, h                  |
| Speed    | Metre per second, m/s | Kilometre per hour, km/h |

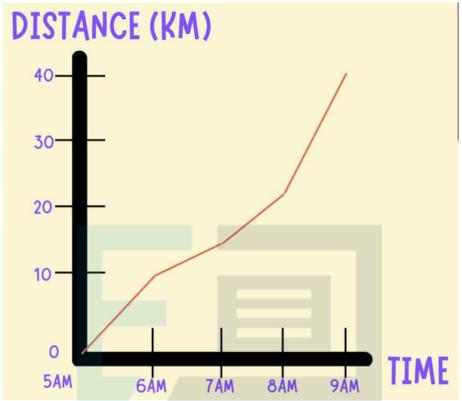
#### Worked Example 1:

A runner finished a 1200-meter segment of a race in 30 seconds. What was his average speed?



#### Worked Example 2:

A submarine is traveling at a constant speed of 20 km/h. How long will it take to cover a distance of 300 km?




| Worked Example 3: A train covers a distance of 600 km in 9000 seconds. What is the speed of the train in km/h and m/s? |  |
|------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                        |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
| Distance-time graph                                                                                                    |  |
| How does it look like?                                                                                                 |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
| AM PAPERS PRACTIC                                                                                                      |  |
| Calculating speed from a distance-time graph                                                                           |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
|                                                                                                                        |  |
| *Speed = Gradient of the distance time graph                                                                           |  |

- Quick tips: The gradient of the graph indicates the object's speed.
- The steeper the gradient, the faster the movement.
- When the slope is horizontal, it means the slope is zero.



#### Worked Example 4



The figure above shows the distance-time graph for a train.

## Answer the following questions:

1. How far did the marathoner run?



- 2. What was the Marathoner's average speed in km/h?
- 3. Have the marathoner ever stopped?
- 4. When was the marathoner highest speed?



## 2.2 Measuring Acceleration

Discuss: What does it mean (in regards to acceleration) when a car company says that their car can goes from "0 – 100km/h in 2s"?

Answer:

#### Difference between speed and velocity:

- Both velocity and speed quantify how fast an object is moving, but velocity also requires specifying the direction.
- For example, an aircraft may have a speed of 300 m/s and a velocity of 300 m/s heading north.
- Speed is a scalar quantity, whereas velocity is a vector quantity.

#### **Acceleration**

1. Acceleration is the rate of change of an object's velocity (speed).

#### Calculating acceleration

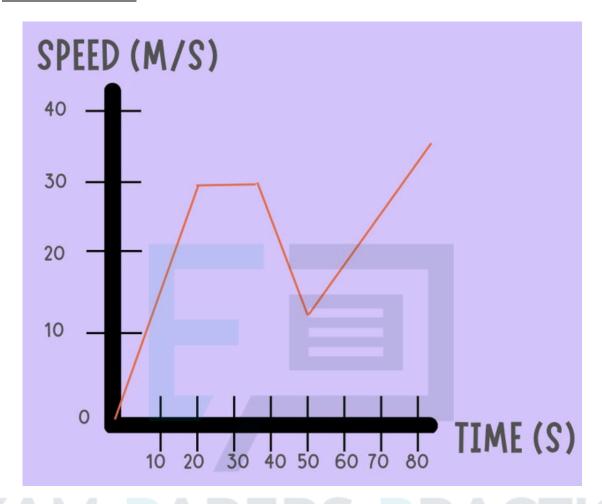
- 1. To calculate acceleration, we need
  - Change in velocity
  - Time taken
- 2. Formula of acceleration

© 2024 Exams Pap
$$a$$
's  $\Rightarrow$ ractice. All Rights Reserved  $t$ 

3. Important symbols

| Hportunt symbols |               |
|------------------|---------------|
| u                | Initial Speed |
| V                | Final Speed   |

4. Unit for acceleration


m/s2



| Worked Example 8           |                                                           |
|----------------------------|-----------------------------------------------------------|
| A car accelerates from     | 20 m/s to 80 m/s in 10 seconds. What is its acceleration? |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            | <u> </u>                                                  |
| 2.2.1 Speed-time gra       | ph                                                        |
|                            | ows how the object's speed changes as it moves.           |
| Distance-time graph        | Speed-time graph                                          |
| Distance time graph        | Specu time graph                                          |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
| *Always check the grap     | oh labels                                                 |
| Analysing a <b>SPEED-T</b> | IMF CRAPH                                                 |
| Tilialy sing a st LLD 1    | INIE GREAT                                                |
|                            |                                                           |
|                            |                                                           |
|                            | ADEDC DDACTICE                                            |
| AN                         | APERS PRACIILE                                            |
| (                          | © 2024 Exams Papers Practice. All Rights Reserved         |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |
|                            |                                                           |



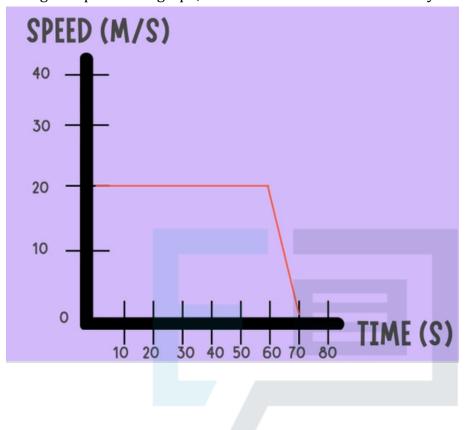
#### Worked Example 5:



Name the sections that represent: a. Steady speed

- b. Speeding up
- c. Being stationary
- d. Slowing down

# 2.2.2 Using a speed-time graph to deduce distance travelled


Formula to calculate distance from a speed time graph

| Distance =            |  |
|-----------------------|--|
| Area of a rectangle = |  |
| Area of a triangle =  |  |
|                       |  |



# Worked Example 6

Using the speed-time graph, calculate the distance travelled by the object.



# **EXAM PAPERS PRACTICE**

🕽 2024 Exams Papers Practice. All Rights Reserved



#### 2.2.4 Calculating acceleration from a speed-time graph

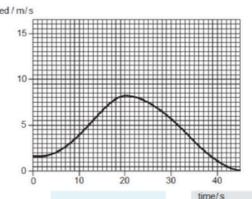
We can find the acceleration of an object by calculating the gradient of its speed-time graph.

Worked Example 9 - Calculating acceleration from a speed-time graph A roller coaster starts at rest and gradually accelerates up a steep incline. It then reaches its maximum speed at the peak before descending rapidly. The table below shows its speed changes. Draw a speed-time graph to represent this data.

| Time / s | Speed / m/s |
|----------|-------------|
| 0        | 0.0         |
| 5        | 5.0         |
| 10       | 5.0         |
| 15       | 0.0         |
| 20       | 5.0         |
| 25       | 15.0        |
| 30       | 35.0        |

# AM PAPERS PRACTICE © 2024 Exams Papers Practice. All Rights Reserved

#### Calculating acceleration from a curve speed-time graph


- Draw a tangent at the time which acceleration needs to be found
- Calculate the gradient of the tangent



## **Past Year Questions**

The graph shows the speed-time graph of a cyclist who is moving in a straight line.

1



What is the acceleration of the cyclist at a time of 20 seconds?

- A 0.5 m/s<sup>2</sup>
- B -0.5 m/s<sup>2</sup>
- C 0 m/s2
- D 11.5 m/s2

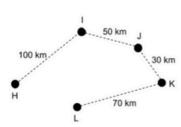
A car travels along a clear 10.0 km section of motorway in 6.0 minutes. It then drives through 3.0 km of roadworks in 3.0 minutes.

2

Which calculation will give the correct average speed for the journey?

$$\frac{3.0}{3.0} = 1.00 \text{ km/min}$$

B 
$$\frac{10.0}{6.0}$$
 = 1.67 km/min


C 1.67 + 1.00 = 2.67 km/min

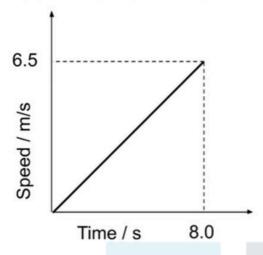
D  $\frac{13.0}{9.0}$  = 1.44 km/min 2024 Exams Papers Practice. All Rights Reserved

3

A helicopter flies the route shown below.

It stops at point I for 30 minutes to pick up some cargo.




The total time the helicopter takes between taking off from  ${\bf H}$  and landing at  ${\bf L}$  is 4.0 hours.

Calculate the average speed of the helicopter when it is flying.

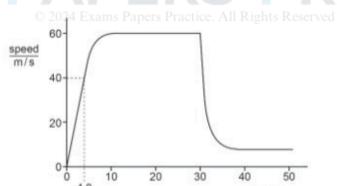
- A 55.6 km/h
- B 250 km/h
- C 62.5 km/h
- D 71.4 km/h

The graph shows the journey undertaken by a car.

4



Which equation correctly gives the distance travelled by the car?


A 
$$\frac{6.5 \times 8.0}{2}$$
 = 26 m

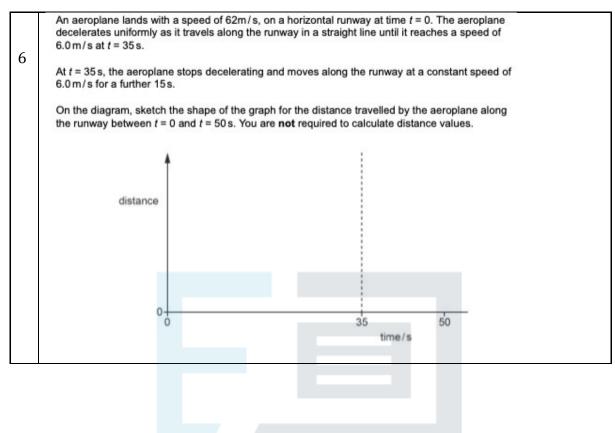
- B 6.5 x 8.0 = 52 m
- **c**  $\frac{6.5}{8.0}$  = 0.81 m
- $\frac{8.0}{6.5}$  = 1.2 m

A sky-diver jumps out of a hot-air balloon, which is 4000 m above the ground. At time = 30 s, she opens her parachute.

5

The graph is the speed-time graph of her fall.




(a) Label with the letter X the point on the graph where the sky-diver opens her parachute. [1]

time/s

(b) Label with the letters Y and Z the two parts of the graph where the sky-diver falls at terminal velocity. [1]

[Total: 2]





# EXAM PAPERS PRACTICE

© 2024 Exams Papers Practice. All Rights Reserved