

# Chapter 17 Static Electricity



For more help, please visit <u>www.exampaperspractice.co.uk</u>



# 17.1 Charging and discharging

### 1. Static electricity

Static electricity is the build-up of electric charge on the surface of objects, which can be discharged suddenly as a spark or shock upon contact with a conductor or another object of different electrical potential.

- One way to generate static electricity is via friction, for instance, rubbing a plastic object with a cloth.
- 3. The figure below shows one way of investigating this phenomenon.



- b. When the cloth is brought near the rod, they attract each other.
- c. If a second rod is rubbed similarly and brought close to the first, they repel each other, causing the first rod to move away.
- 4. We have seen both attraction and repulsion, this means that there are two types of static electricity there:
  - a. <u>Positive charge</u>
  - b. <u>Negative charge</u>
- 5. Magnetism and static electricity are distinct phenomena: magnetism results from magnetic poles, whereas static electricity originates from electric charges.



### 17.2 Explaining static electricity

1. Before we understand how things are "charged", we need to understand how an atom is like:



- a. The nucleus of an atom contains protons and neutrons, with protons being positively charged particles.
- b. Electrons are negatively charged particles that are relatively loosely held within the atom.
- c. Importantly, the positive charge from protons and the negative charge from electrons in an atom balance each other, resulting in the atom being

electrically neutral overall.

#### 24 Exams Papers Practice. All Rights Reserved

- 2. It is the force of <u>friction</u> that causes charging. Here are the details:
  - a. When a plastic rod is rubbed against a cloth, friction transfers small particles known as electrons from one material to the other.
  - b. If an atom loses an electron, it acquires a positive charge.
  - c. Conversely, if another atom gains an electron, it acquires a negative charge.



### Conductors and insulators

Conductor:

A substance that allows the flow of electrons. For examples: Metals, gold, and copper.

Insulator:

A substance that inhibits the flow of electrons. For examples: Glass, plastic, and amber.

- 1. Charge can move through conductors and not insulator.
  - Reason: In insulators, the electrons are tightly bound to their atoms and not easily removed.
  - This is how the insulator remains uncharged.

# EXAM PAPERS PRACTICE © 2024 Exams Papers Practice. All Rights Reserved



## 17.3 Electric fields

1. There is an electric field around a charged object.

Definition of electric field:

An electric field is a region around electrically charged particles or objects where electric forces are exerted on other charged particles or objects.

2. If a charged object enters the electric field of another charged object, it will undergo a force, either attraction or repulsion..





### **Charged particles**

- 1. Electric charge is quantified in coulombs (C), a unit named after Charles-Augustin de Coulomb.
- 2. Coulomb discovered that the force between two charged objects depends on the magnitude of their charges and the distance between them.

| Electron | -1.6 x 10-19 C |
|----------|----------------|
| Proton   | 1.6 x 10-19 C  |



# EXAM PAPERS PRACTICE © 2024 Exams Papers Practice. All Rights Reserved



#### Past Year Questions



For more help, please visit <u>www.exampaperspractice.co.uk</u>





© 2024 Exams Papers Practice. All Rights Reserved

For more help, please visit <u>www.exampaperspractice.co.uk</u>