

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Topic Question

Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY

AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Question 1.

_,	
(a)	Benzene can react with aluminium bromide, $AlBr_3$, and bromoethane, CH_3CH_2Br , to form ethylbenzene.
	Write the equation for the formation of the ${\rm CH_3CH_2}^+$ species.
	(1 mark)
(b)	Name the mechanism for the formation of ethylbenzene from benzene and aluminium bromide.
(c)	Using the ${\rm CH_3CH_2}^+$ electrophile, draw the mechanism for the conversion of benzene into ethylbenzene. Include all necessary curly arrows and charges.
E	XAM PAPERS PRACTICE
	opyright 2024 Exam Papers Practice (3 marks)
(d)	State the type of reaction that occurs in part (c).
	(1 mark)

Question 2.

(a) Benzene undergoes substitution reactions. State the equation for the reaction of benzene with nitric acid to produce nitrobenzene and water.

(2 marks)

(b) The structure of methylbenzene is shown below in Fig. 2.1.

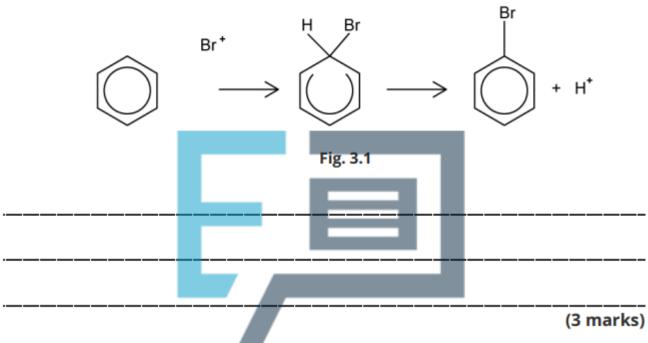
EXAM PAPERS PRACTICE

Copyright

© 2024 Exam Papers Practice

Fig. 2.1

Draw the structures of the two isomers of choromethylbenzene formed from the reaction of methyl benzene and Cl_2 in the presence of $AlCl_3$.


(2 marks)

(c)	State the type of reaction that benzene will typically undergo.
	(1 mark)
Que	estion 3.
(a)	This question is about the bromination of benzene.
(b)	State the name of the mechanism that benzene will undergo if reacted with bromine in the presence of a halogen carrier to form bromobenzene, C ₆ H ₅ Br. (1 mark) Write an equation to show how the halogen carrier generates the Br ⁺ ion in order to allow the reaction in part (a) to occur.
С	Opyright 2024 Exam Papers Practice

(c) Complete the mechanism in Fig. 3.1 for the formation of bromobenzene. Include relevant charges where appropriate.

Question 4.

- (a) This question is about the reactions of methylbenzene.
 - Draw the structure of compound **A** in Fig. 4.1.
 - © 2024 Exam Papers Practice

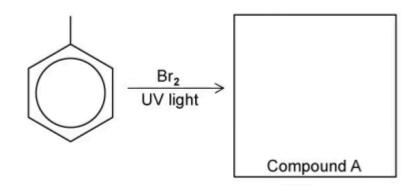
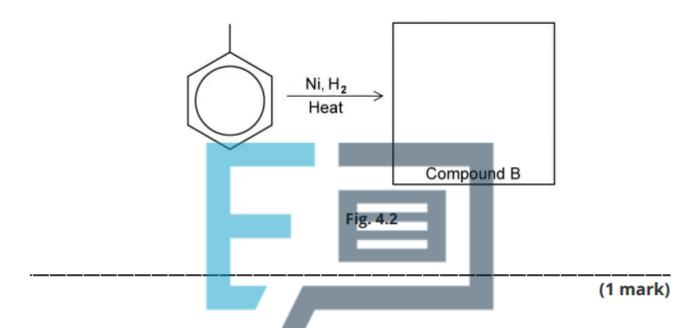
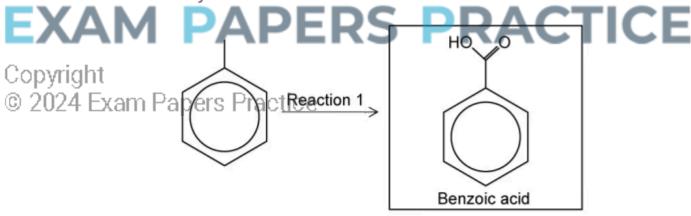



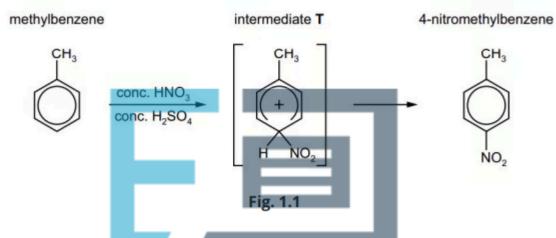
Fig. 4.1

(1 mark)

(b) Draw the structure of compound B in Fig. 4.2.

(c) State the reagents and conditions required for reaction 1 in Fig. 4.3 for the formation of benzoic acid from methylbenzene.




Fig. 4.3

(3 marks)

Question 5.

(a) 4-nitromethylbenzene can be prepared via an electrophilic substitution reaction as shown in Fig. 1.1.

 This reaction also forms an isomer of 4-nitromethylbenzene as a by-product. Draw the structure of this by-product.

ii) Write an equation for the reaction between HNO₃ and H₂SO₄ that forms the

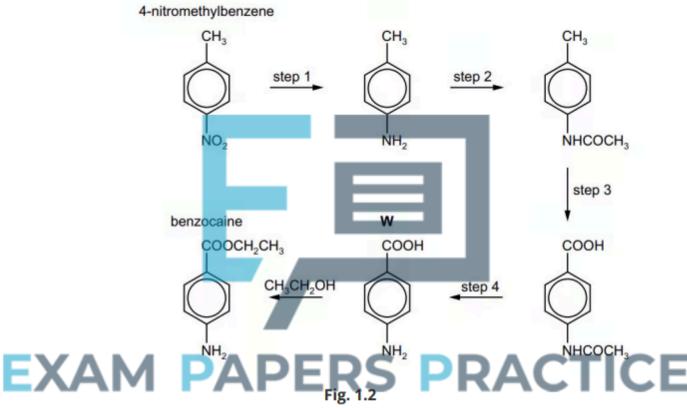
Copyright for this reaction.

© 2024 Exam Papers Practice

ii) Describe how the structure and bonding of the six-membered ring in intermediate \mathbf{T} differ from those in methylbenzene. In your answer refer to the hybridisation, the π bonding and the bond angles in the ring system.

._____

._____


(5 marks)

[1]

[3]

(b) Benzocaine is used as a local anaesthetic. It can be synthesised from 4-nitromethylbenzene by the route shown in Fig. 1.2.

Copyright

© 2024 Exam Papers Practice

1) Give the systematic name of compound **w**.

ii) Suggest the reagents and conditions for step 1.

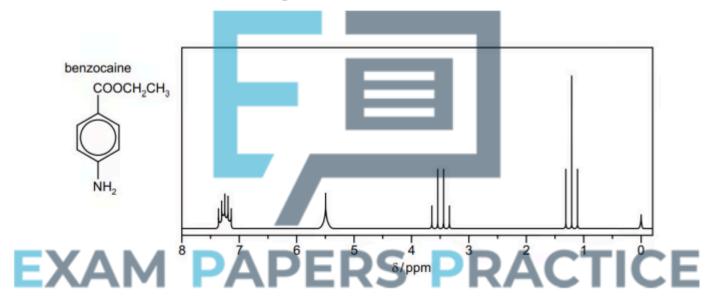
step 1

[2]

Suggest the reagent for step 2.	
step 2	[1]
Suggest the reagents and conditions for step 3 and step 4.	
	[2]

EXAM PAPERS PRACTICE

Copyright (6 marks)


© 2024 Exam Papers Practice

- (c) A sample of benzocaine was analysed by carbon-13 NMR and proton NMR spectroscopy.
 - i) Predict the number of peaks in the carbon-13 NMR spectrum of benzocaine.

[1]

Benzocaine was dissolved in $CDCl_3$ and the proton NMR spectrum of this solution was recorded as shown in Fig. 1.3.

Copyright

Fig. 1.3

© 2024 Exam Papers Practice used in answering this question.

Complete Table 1.1 for the chemical shifts δ 1.2 ppm, 3.5 ppm and 5.5 ppm.

Table 1.1

δ/ppm	environment of proton	number of ¹ H atoms responsible for the peak	splitting pattern
1.2			
3.5			
5.5			
7.1-7.4	attached to aromatic ring	4	two doublets

iii) Explain the splitting pattern for the absorption at δ 1.2 ppm.

[1]

(5 marks)

Table 1.2

ā		Example	chemcial shift range, δ / ppm
	alkane	-С Н ₃ , -С Н ₂ -, >С Н -	0.9-1.7
ĉ	alkyl next to C=O	CH ₃ -C=O,-CH ₂ -C=O, >CH-C=O	2.2-3.0
- 1	-	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3-3.0
	alkyl next to electronegative atom	CH ₃ -O,-CH ₂ -O, -CH ₂ -C/	3.2-4.0
ā	attached to alkene	-CHR	4.5-6.0
ā	attached to aromatic ring	H-Ar	6.0-9.0
ā	aldehyde	HCOR	9.3-10.5
ā	alcohol	RO H	0.5-6.0
		Ar-OH S P	4.5-7.0 9.0-13.0
pyright	alkyl amine	R-N H -	1.0-5.0
2024 Ex	arylamine arn Papers Practi	Ar _Z N H 2	3.0-6.0
ZUZ4 LA	amide	RCON H R	5.0-12.0

(d) Benzocaine can also be used to synthesise the azo compound S by the following route.

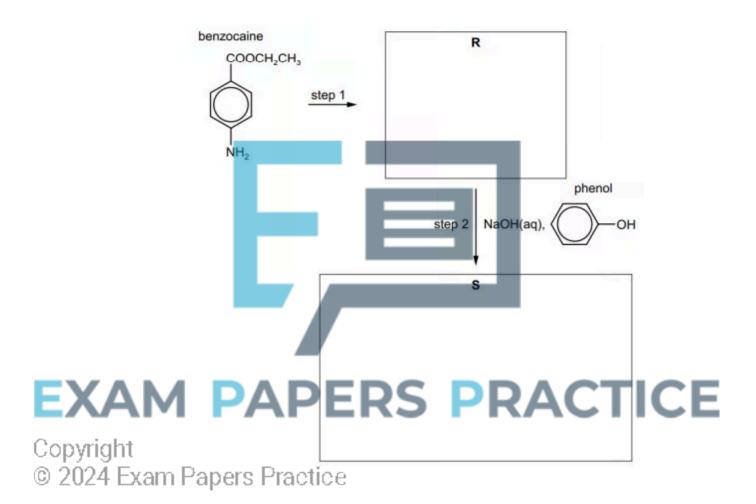
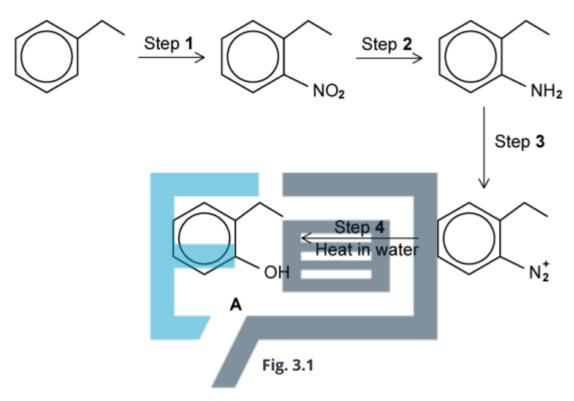


Fig. 1.4

i) Suggest the reagent(s) used for step 1.

[1]

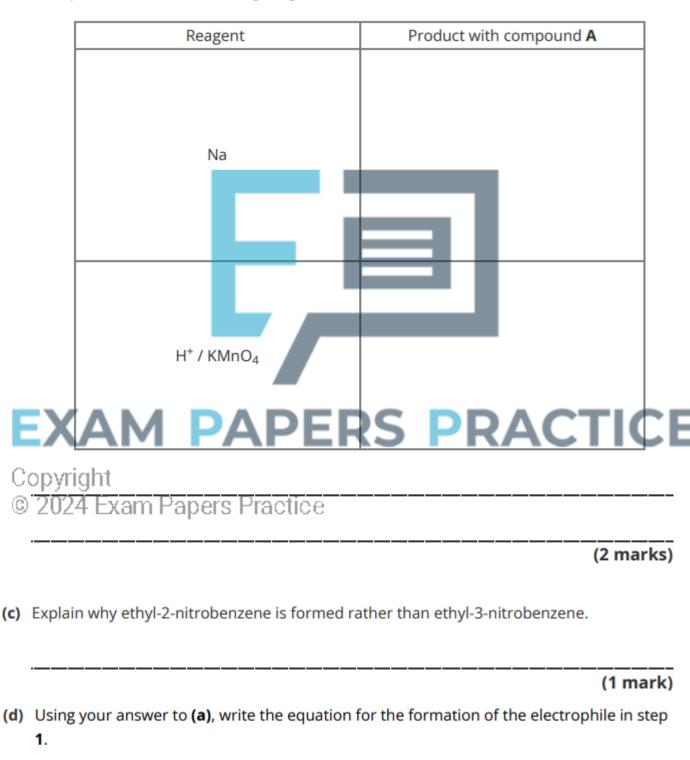
ii) Suggest structures for compounds R and S and draw them in the boxes in Fig. 1	.4. [2]
	ks)
Question 6.	
(a) Benzene can undergo electrophilic substitution with ethanoyl chloride in the presence aluminium chloride.	of
i) Write an equation to show the formation of the electrophile.	[1]
ii) Draw the mechanism for the reaction.	
	[3]
EXAM PAPERS PRACTIC][
Copyright	
© 2024 Exam Papers Practice	
(4 mar	ks)
(b) The organic product from part (a) can be reduced to form an alcohol.	
Name a suitable reducing agent and write a chemical equation to show this reduction, using [H] to represent the reducing agent.	
(2 mar	ks)



(c)	Outline the mechanism to form the acylium ion		•		minium chloride
					(2 marks)
d)	Explain how the catalys	t reforms.		4	(= 333333 ,
					(2 marks)
	estion 7.				
E	XAM	PAPE	ERS F	PRA	CTICE

Copyright
© 2024 Exam Papers Practice

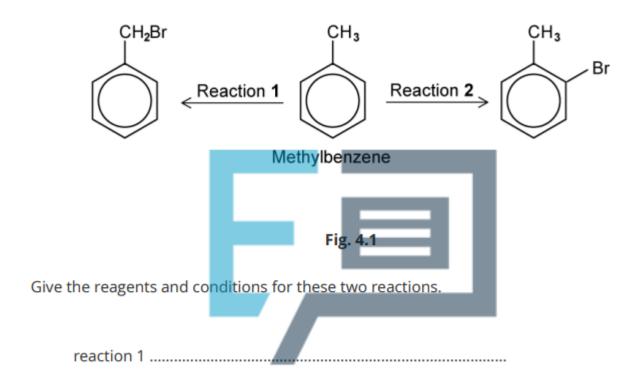
(a) Compound A can be formed from ethylbenzene by the following route in Fig. 3.1.



Suggest reagents and conditions for the following steps.

	 (4 marks)
Step 3	
Step 2	
्राकुणां ght	

(b) Suggest the structures of the organic products of the reactions between each of the compound **A** and the following reagents. If no reaction occurs write 'no reaction'.



(1 mark)

Question 8.

(a) Methylbenzene can undergo different reactions to form the products shown in Fig. 4.1.

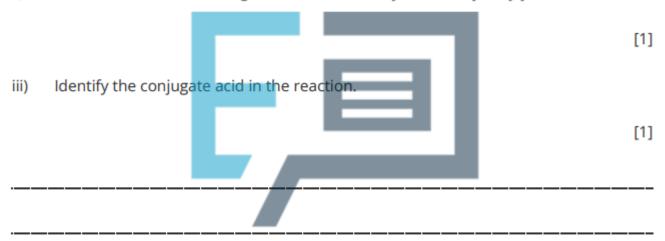
EXMINITIAL PAPERS PRACTICE

Copyright-----

© 2024 Exam Papers Practice

(2 marks)

(b)	i)	Name the mechanism of reaction 1 in part (a)
	ii)	[1] Draw the structure of the product obtained if reaction 1 is carried out using an excess of bromine.
		[1]
(c)	Draw	the reaction mechanism for reaction 2.
		AM PAPERS PRACTICE (3 marks)
		ight A Example Part (a). Draw and name the uct of this reaction.
		(2 marks)



Question 9.

- (a) The nitration of benzene is the first important step in manufacturing dyes and explosives.
 - i) Write the equation for the generation of the electrophile.

ii) State which reactant acting as a Brønsted-Lowry base and justify your answer.

[1]

EXAM PAPERS PRACTICE (3 marks)

Copyright

© 2024 Exam Papers Practice

(b) Compound B is produced in two steps as outlined in Fig. 1.1.

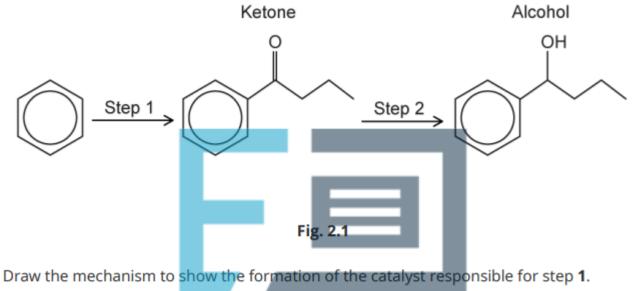
Outline the reagents and conditions required for the production of compound A i) drawn in Fig. 1.1.

[2]

Using curly arrows, describe the mechanism for step 1. AMPAPERS PRACTICE [3]

Copyright © 2024 Exam Papers Practice ———	
	(5 marks)

(c)	Draw the dot-and-cross diagram for the structure of the catalyst, once the has been generated in part (b) .	electrophile
		(2 marks)
(d)	Explain why benzene can generally only undergo substitution reactions.	
		(4 marks)


EXAM PAPERS PRACTICE

Copyright
© 2024 Exam Papers Practice

Question 10.

(a) Fig. 2.1 shows the formation of a ketone followed by an alcohol.

EXAM PAPERS PRACT2 Harks E

Copyright

© 2024 Exam Papers Practice

(D)	Draw the mechanism for the formation of the ketone, including the regeneration of the catalyst required.					
	(5 marks)					
(c)	State the reagents required for step 2.					
r	VALADADEDE DDACT(2marks)					

Copyright

© 2024 Exam Papers Practice

Question 11.

(a) Benzene can be converted into cyclohexane as shown in Fig. 3.1.

Fig. 3.1

i)	For this reaction, n	am	e the type of re	action and iden	itify th	e reagent and conditions
	needed.			_		

type of reaction

reagent and conditions

[2]

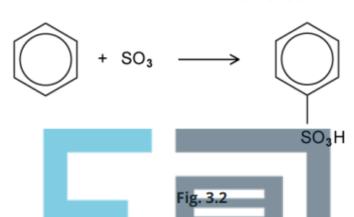
ii) State the bond angles in benzene and cyclohexane.

Copyripped angle in benzene

© 2024 Exam Papers Practice

Explain your answers.

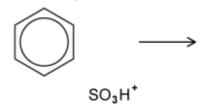
[2]


._____

(4 marks)

(b) When benzene reacts with SO₃, as shown in Fig. 3.2, benzenesulfonic acid is produced.

Benzenesulfonic acid


The mechanism of this reaction is similar to that of the nitration of benzene. Concentrated H₂SO₄ is used in an initial step to generate the SO₃H⁺ electrophile as shown.

$$SO_3 + H_2SO_4 \rightarrow SO_3H^+ + HSO_4^-$$

i) Draw a mech<mark>anis</mark>m for the reaction of benzene with SO₃H⁺ ions in Fig. 3.3. Include all necessary curly arrows and charges.

Copyright

© 2024 Exam Papers Practice

Benzenesulfonic acid

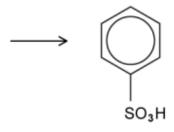


Fig. 3.3

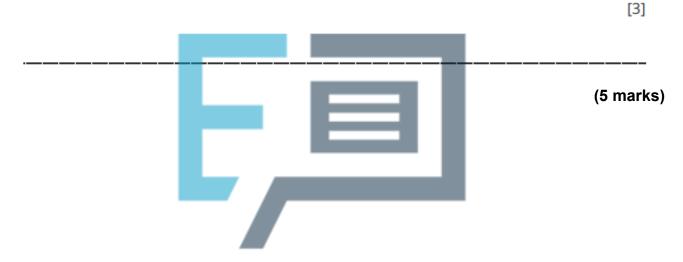
[3]

ii) Write an equation to show how the H₂SO₄ catalyst is reformed. [1] (4 marks) (c) 3-aminobenzoic acid can be synthesised from methylbenzene in three steps as shown in Fig. 3.4. Methylbenzene Ν Step 1 Step 2 EXAM PAPERS PRA Step 3 Copyright 3-aminobenzoic acid © 2024 Exam Papers Practice CO₂H

Fig. 3.4

i) Draw the structures of **M** and **N** in the boxes.

[2]



ii) Suggest reagents and conditions for each step of the synthesis.

step **1**

step 2

step **3**

EXAM PAPERS PRACTICE

Copyright
© 2024 Exam Papers Practice