

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

Level: CIE AS and A Level (9701)

Subject: Chemistry Topic: CIE Chemistry Type: Topic Question

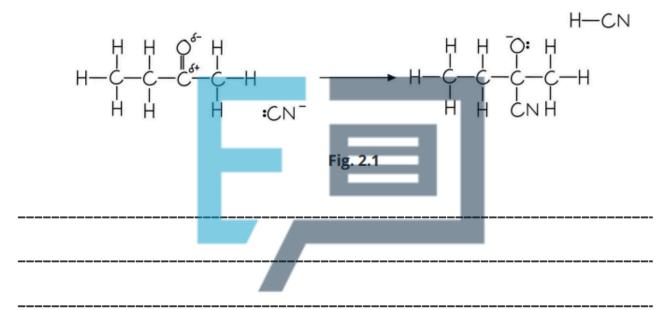
Chemistry CIE AS & A Level
To be used for all exam preparation for 2025+

CHEMISTRY

AS and A

This to be used by all students studying CIE AS and A level Chemistry (9701) But students of other boards may find it useful

Que	estion 1.
(a)	State the reactants that can be oxidised to give an aldehyde and a ketone as products.
	(2 marks)
(b)	State the oxidation products, where appropriate, of an aldehyde and a ketone.
	(2 marks)
(c)	Describe how you could use 2,4-DNPH and melting point data to determine the identity of an unknown compound.
E	XAM PAPERS PRACTICE
	o <u>pyright</u> 2024 Exam Papers Practice
3	ZOZT EXAITT apers Flactice


(3 marks)

Question 2.

(a) Butanone can react with HCN.

Complete the reaction mechanism shown in Fig. 2.1 by drawing four curly arrows.

EXAM PAPERS PRACTICE

Copyright

(b) Name the Steam Propers i Practice

	1	1 mark)

(c) Explain why butanone has no positional isomers.

Question 3.

(a) Table 3.1 shows the initial observations for the reaction for Tollens' reagent with aldehydes and ketones.

Table 3.1

Ket	one	Alde	hyde
Initial observation	Final observation	Initial observation	Final observation
Colourless solution		Colourless solution	
Complete the final obs	servations for aldehyde	es and ketones	

(b) Table 3.2 shows the initial observations for the reaction for Fehling's with aldehydes and ketones.

Copyright

© 2024 Exam Papers Practice Jable 3.2

Ketone

Ket	one	Aldellyde						
Initial observation	Final observation	Initial observation	Final observation					
Blue solution		Blue solution						
Complete the final observations for aldehydes and ketones.								

(2 marks)

Aldehvde

(c)	Ethanal and propanal are reacted separately heated with an alkaline solution of iodine.							
	i)	State which aldehy	de will give a yellov	v precipitate for this r	reaction. [1]			
	ii)	Explain your answe	er to part (c)(i) .		[1]			
				riety of applications.	(2 marks)			
E	Whe	n calcium metal is pl	aced in dilute sulf	uric acid, it re <mark>acts</mark> vigo	ACIICE			
() ()	stops 202	Some of the calciu 24 Exam Pape	m metal and dilute rs Practice	e sulfuric acid remain	n metal and the reaction unreacted.			
	Sugg	est an explanation fo	or these observation	ons.				
					(1 mark)			

Calcium ethanedioate is formed when calcium reacts with ethanedioic acid, HOOCCOOH.							
Calcium ethanedioate contains one cation and one anion.							
i)	State the full electronic configuration of the cation in calcium	ethanedioate. [1]					
ii)	Deduce the charge on the cation.	[1]					
iii)	Draw the fully displayed formula of ethanedioic acid.	[1]					
	i)	Calcium ethanedioate contains one cation and one anion. i) State the full electronic configuration of the cation in calcium ii) Deduce the charge on the cation.					

some household products. Copyright

(3 marks)

© 2024 Exam Papers Practice

i)	The chlorate(I) ion is formed when cold aqueous sodium hydroxide reacts with
	chlorine.

Write an ionic equation for this reaction. State symbols are **not** required.

[1]

ii) The chlorate(I) ion is unstable and decomposes when heated as shown.

$$3ClO^- \rightarrow 2Cl^- + ClO_3^-$$

This reaction can be described as a disproportionation reaction.

Describe what is meant by disproportionation reaction.

[1]

iii) Deduce the oxidation number of chlorine in each species for the equation in (c)(ii).

Complete the boxes.

$$3ClO^- \rightarrow 2Cl^- + ClO_3^-$$

oxidation number of chlorine

Copyright
© 2024 Exam Papers Practice

[1]

(3 marks)

(d) Calcium carbonate reacts with 2-hydroxypropanoic acid to form product Y.

2-hydroxypropanoic acid Y OH H₃C—C—H COOH COOH

Fig. 1.1

i) Identify the **two** other products of the reaction of 2-hydroxypropanoic acid with calcium carbonate.

[1]

Two possible methods of making 2-hydroxypropanoic acid are shown in Fig. 1.2.

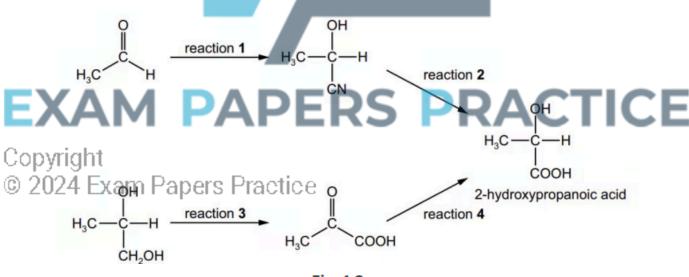


Fig. 1.2

ii)	State suitable	reagents and	conditions	for	reactions	1	and	3.
-----	----------------	--------------	------------	-----	-----------	---	-----	----

reaction **1**reaction **3**

[4]

[1] The reagent for reaction 4 is NaBH₄. iv) Identify the role of NaBH₄ in this reaction. [1] 2-hydroxypropanoic acid has a chiral centre. v) State what is meant by chiral centre. [1] Copyright (8 marks)

Question 5.

(a) Compound **W** can be converted into three different organic compounds as shown by the reaction scheme in Fig. 2.1.

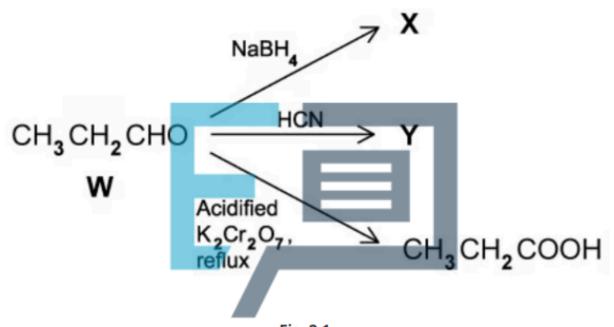


Fig. 2.1

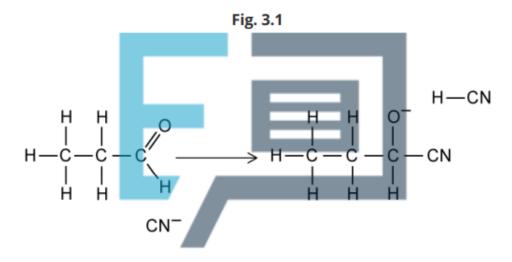
Write an equation for the formation of **X**. Use [H] to represent the reagent in the

equation. Copyright

© 2024 Exam Papers Practice

(1 mark)

(b)	Identify the specific type of isomerism shown by the product Y , in Fig. 2.1.
	Draw the mechanism to show the formation ${\bf Y}$ and explain how this leads to the isomers of ${\bf Y}$.
	(5 marks)
(c)	When 5.00cm^3 of propanal ($Mr = 58.0$) were reacted with an excess of acidified potassium dichromate (VI) solution, 4.25 g of propanoic acid ($Mr = 74.0$) were obtained.
	The density of propanal is 0.810 g cm ⁻³ .
E	Calculate the percentage yield for this reaction.
(C) (C)	p <u>pyright</u> 2024 Exam Papers Practice
	(3 marks)


(d)		ferent carbonyl compound, \mathbf{Q} , (M_r = 72) reacts with 2,4-dinitrop with Tollens' reagent.	henylhydrazine but
	i)	State what you would see when Q reacts with the 2,4-dinitrop reagent	henylhydrazine
	:::\	State what functional group is present in O	[1]
	ii)	State what functional group is present in Q .	[1]
	iii)	Identify Q either by name or by its structural formula.	[1]
			(3 marks)
		AM PAPERS PR	ACTICI
_		State a suitable reducing agent	[1]
C	i ù 0	2 Name the functional group and lithic words are required)	[4]
	iii)	Give the structural formula of R	[1]
			[1]
			(3 marks)

Question 6.

(a) 2-hydroxybutanoic acid can be made from propanal by via a reaction with hydrogen cyanide and the subsequent hydrolysis of 2-hyrdoxybutanenitrile. A possible pathway is shown in Fig. 3.1.The incomplete mechanism for reaction 2 is shown in Fig. 3.2.

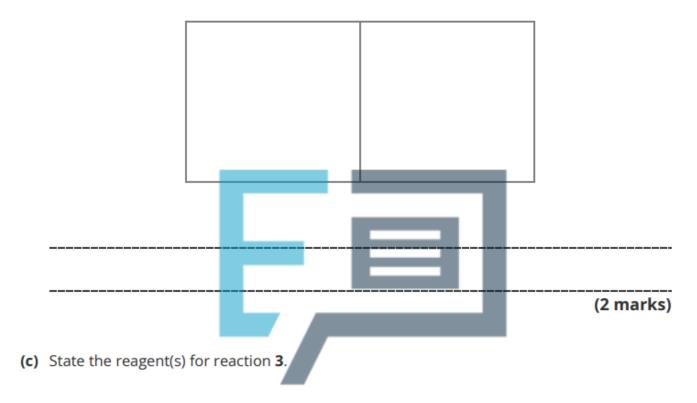
Compound A Reaction 1 Propanal Reaction 2 2-hydroxybutanenitrile Reaction 3 2-hydroxybutanoic acid

EXAM PAPERS PRACTICE

i) State the reagents and conditions required for reaction **2**.

© 2024 Exam Papers Practice

[3]


ii) Complete the mechanisim for this reaction.

[4]
	-
	-
	_

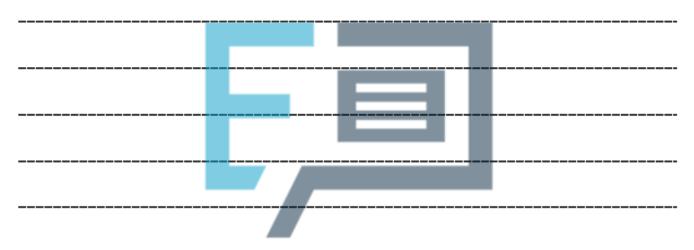
(7 marks)

(b) 2-hydroxybutanenitrile contains a chiral centre. Draw the three-dimensional structures of the two optical isomers.

EXAM PAPERS PRACTICE

(d)	Pedmid	und A 1	orms	propanal	when	reacted	with	acidified	potassium	dichroma	te. Give
0	The Stru	uctivial	fo rMa	la off con	plound	A e					

(1 mayl)


(1 mark)

- **(e)** Compound **A** and propanal were tested using a series of reagents outlined in Table 3.1. For each of the tests listed:
 - · State the positive result
 - Identify which compound(s) would give a positive result

Table 3.1

Reagent	Observation for positive result	Compounds that will give a positive result
I ₂ / NaOH (aq)		
Na ₂ CO ₃		
2,4-DNPH		

EXAM PAPERS PRACTICE

Copyright
© 2024 Exam Papers Practice

Que	estion	1
(a)	Aque	οι

a)	t.				
	Identify ${\bf two}$ isomers with the formula C_3H_6O that cannot be reduced by aqueous NaBH ₄ .				
				(2 marks)	
b)	Identify the two isomers NaBH ₄ .	with the formula C ₃ H ₆ O tha	at can be reduced by	aqueous	
			31		
				(2 marks)	
:)	~ ~ ~ ~	reducing agent followed by tones can exhibit optical iso innot.			
	opyright				
C)	i) Classify the reduct	ers Practice ion products of aldehydes a	nd ketones.		
				[2]	
		duction products of ketones	can exhibit optical is	omerism, while	
	the reduction prod	ucts of aldehydes cannot.		[2]	
				(4 mai	

	(2 mar
estion	8
	question is about th <mark>e re</mark> actions of an o <mark>rganic compou</mark> nd R .
A l-	ric of 15 0 c of an aversion contains 2 channel it to contain 60 00/ contain 2 70
	sis of 15.0 g of an o <mark>rganic comp</mark> ound, R , showed it to contain 69.8% carbon, 2.79 ygen and the remaining mass was hydrogen.
01 02	ygerrana the remaining mass was nyarogen.
i)	Calculate the empirical formula of the organic compound R .
ii)	Compound R has a molecular mass of 86.0 g mol ⁻¹ , deduce the molecular formula of compound R .
;оруд	ight
202	24 Exam Papers Practice
	··

(b) Compound R is a straight chain organic compound. One isomer of compound R produces optical isomers of compound S when reacted with hydrogen cyanide followed by dilute acid.

Compounds **R** and **S** were tested with acidified potassium dichromate(VI) and Tollens reagent. The results are shown in **Table 2.1.**

Table 2.1

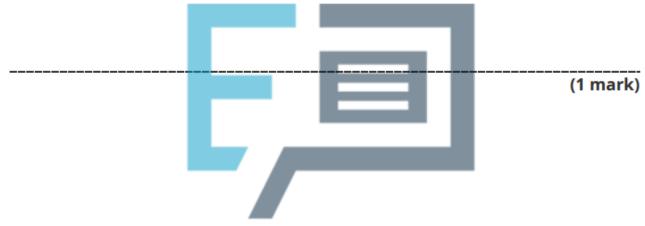
	R	S
Acidified potassium dichromate(VI)	Green solution	Green solution
Tollens reagent	Silver mirror formed I	No visible change

Using this information and your answer from part (a), identify compounds **R** and **S**. Justify your answer.

EXAM PAPERS PRACTICE

Copyright © 2024 Exam Papers Practice

(4 marks)



(c) Draw 3D representations of the two optical isomers of compound S.

(1 mark)

(d) There are some isomers of compound S that do not display optical isomerism.

Draw the skeletal formula of these isomers.

EXAM PAPERS PRACTICE

Copyright

© 2024 Exam Papers Practice