

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

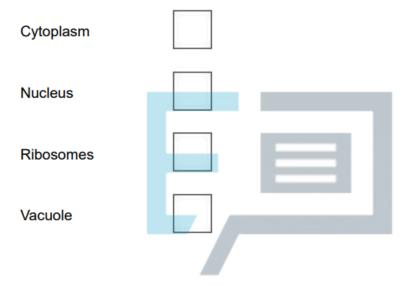
Designed to test your ability and thoroughly prepare you

Level: IGCSE Oxford AQA Biology (9201)

Subject: Biology

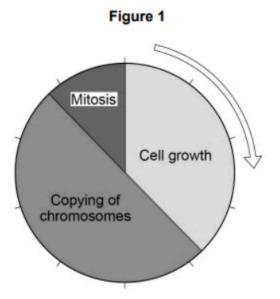
Topic: IGCSE AQA Biology

To be used by all students preparing for IGCSE Oxford AQA Biology (9201)
Students of other Boards may also find this useful


Biology

IGCSE AQA

Key skills


This question is about the cell cycle. 1. Chromosomes are copied during the cell cycle. (a) Where are chromosomes found? Tick one box.

What is the name of a section of a chromosome that controls a characteristic? (b)

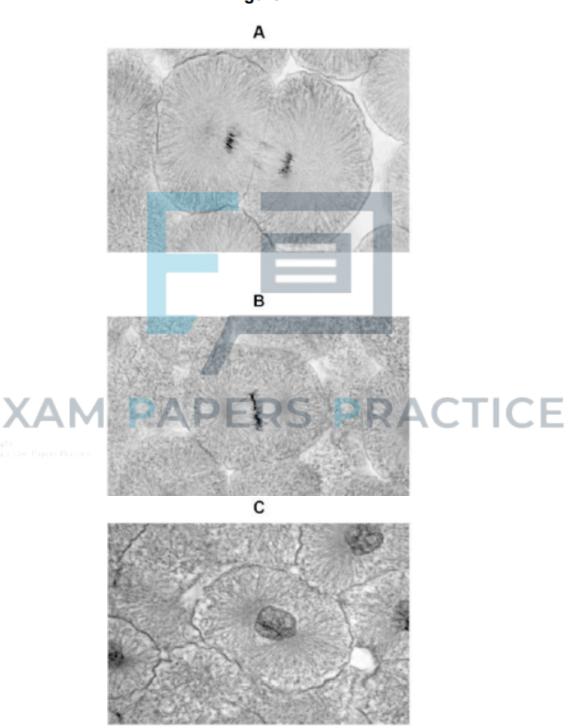
(1)

Figure 1 shows information about the cell cycle.

For more help visit our website https://www.exampaperspractice.co.uk/

(c)	Which stage of the ce	ell cycle in Figure 1	1 takes the most time	?	
	Tick one box.				
	Cell growth				
	Copying of chromos	omes			
	Mitosis				(1)
					(')
(d)	During mitosis cells ne	ed extra energy.			
	Which cell structures p	provide most of this	energy?		
	Tick one box.				
	Chromosomes	PAPE	ERS P	RACTICE	
	Cytoplasm				
	Mitochondria				
	Ribosomes				

(f)	Which cell is not dividing by mitosis	
	Tick one box.	
	A B C D	(1
(g)	Cell E in Figure 2 contains 8 chromosomes.	•
	Cell E divides by mitosis.	
	How many chromosomes will each new cell contain?	
	Tick one box.	
	2	
	4	
	EXAM PAPERS PRACTICE	
	16	



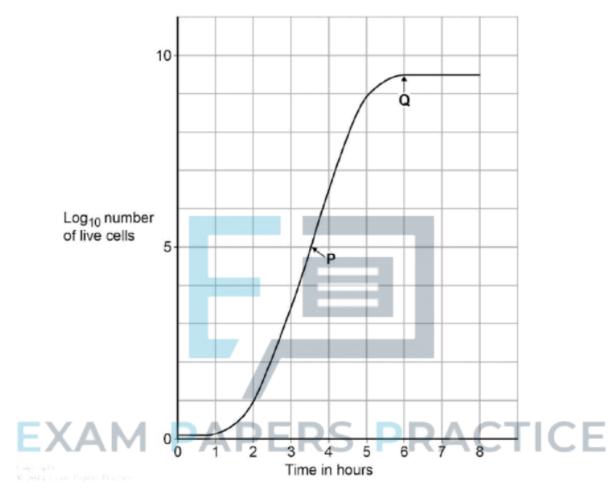
(h)	Why is mitosis important	n living organisms?
	Tick one box.	
	To produce gametes	
	To produce variation	
	To release energy	
	To repair tissues	
		(1) (Total 9 marks)
	EXAM F	APERS PRACTICE

Figure 1 shows photographs of some animal cells at different stages during the cell cycle.

Figure 1

A © Ed Reschke/Photolibrary/Getty Images
B © Ed Reschke/Oxford Scientific/Getty Images
C © Ed Reschke/Photolibrary/Getty Images

	rimon photograp	oh in Figure 1 shows a cel	i iliai is iloi	going throu	gh mitosis?		
	Tick one box.						
	A E	в с					(4)
							(1)
(b)	Describe what is	happening in photograph	4 .				
				3.1			
							(2)
(c)		d to find out more about th					
	The student ma	de a slide of an onion root	tip.				
	She counted the	number of cells in each s	tage of the	cell cycle in	one field of	view.	
		M PAPL		PR	$\Delta C I$	ICE	
	The table below	shows the results.	RS	PR	AC I	ICE	
	Capsinghi	shows the results.	R5	PR	ne cell cycle	ICE	
	Capsinghi	shows the results.	R5	PR	AC I	ICE	Total
N	Capsingfill	shows the results.	RS	Stages in th	ne cell cycle	ICE	Total
N	umber of cells	shows the results. Non-dividing cells	Stage 1	Stages in the Stage 2	ne cell cycle	Stage 4	
N	umber of cells Each stage of th	Non-dividing cells	Stage 1 9 ent amount of	Stages in the Stage 2	ne cell cycle	Stage 4	
N	umber of cells Each stage of th	Non-dividing cells 20 The cell cycle takes a different the fastest in the cell cycle.	Stage 1 9 ent amount of	Stages in the Stage 2	ne cell cycle	Stage 4	
N	umber of cells Each stage of th Which stage is t Give a reason for	Non-dividing cells 20 The cell cycle takes a different the fastest in the cell cycle takes or your answer.	Stage 1 9 ent amount of	Stages in the Stage 2	ne cell cycle	Stage 4	
N	umber of cells Each stage of the Which stage is to Give a reason for Stage	Non-dividing cells 20 The cell cycle takes a different the fastest in the cell cycle.	Stage 1 9 ent amount of	Stages in the Stage 2 4 of time.	ne cell cycle	Stage 4	


·	igth of time Stage 2 lasts in a typical cell.		
	er to 2 significant figures.		
	Time in Stage 2 =	minutes	
) Bacteria such as <i>Esc</i>	cherichia coli undergo cell division similar to mitosis.		

EXAM PAPERS PRACTICE

© 2024 Crain Papers Procise

What type of cell division causes the change in number of *E. coli* cells at **P**?

(f) Suggest why the number of cells levels out at Q.

(2)

(Total 11 marks)

3. Stem cells can be collected from human embryos and from adult bone marrow. Stem cells can develop into different types of cell.

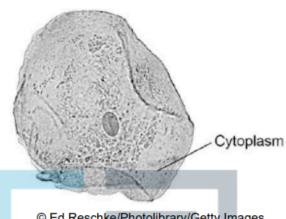
The table gives information about using these two types of stem cell to treat patients.

Stem cells from human embryos	Stem cells from adult bone marrow
It costs £5000 to collect a few cells.	It costs £1000 to collect many cells.
There are ethical issues in using embryo stem cells.	Adults give permission for their own bone marrow to be collected.
The stem cells can develop into most other types of cell.	The stem cells can develop into only a few types of cell.
Each stem cell divides every 30 minutes.	Each stem cell divides every four hours.
There is a low chance of a patient's immune system rejecting the cells.	There is a high chance of a patient's immune system rejecting the cells.
More research is needed into the use of these stem cells.	Use of these stem cells is considered to be a safe procedure.

Scientists are planning a new way of treating a disease, using stem cells.

Use **only** the information above to answer these questions.

(a)	Give three advantages of using stem cells from embryos instead of from adult bone marrow.	
	1	
	2	
	3	(3
(b)	Give three advantages of using stem cells from adult bone marrow instead of from embryos.	(3
	1.	
	2.	
	3	
	(Total	(3 6 marks
4.	(a) How many pairs of chromosomes are there in a body cell of a human baby?	



nromo some	nucleus 	gene 	cell
or a baby to gro	w, its cells must devel	op in a number of way	rs.
xplain how eac	h of the following is pa	rt of the growth proces	ss of a baby.
Cell enlarg	ement		
The proces	s of cell division by mite	osis	
	4 0 4 0	EDC DI	DACTIC
LXAI	M PAP	EK2 PI	RACTIC
1 2024 Essen Papers Prace	Ke .		
-	alisation (differentiation n a fertilised egg?	i) important for the dev	elopment and growth of a
aliny baby iron	. a ioi imood ogg.		

Figure 1 shows a human cheek cell viewed under a light microscope. 5.

Figure 1

© Ed Reschke/Photolibrary/Getty Images

Label the nucleus and cell membrane on Figure 1. (a)

(2)

Cheek cells are a type of body cell. (b)

Body cells grow through cell division.

PRACTICE What is the name of this type of cell division?

Tick one box. Differentiation Mitosis Specialisation

(1)

(1)

Tick one box.

For more help visit our website https://www.exampaperspractice.co.uk/

(e) The cheek cell in Figure 2 is magnified 250 times.

The width of the cell is shown by the line **D** to **E**.

Figure 2

Calculate the width of the cheek cell in micrometres (µm).

Complete the following steps.

Measure the width of the cell using a ruler

mm

Use the equation to work out the real width of the cell in mm:

(3)

(f) A red blood cell is 8 μm in diameter.

A bacterial cell is 40 times smaller.

Calculate the diameter of the bacterial cell.

Tick one box.

0.02 μm

0.2 μm

2.0 μm

20.0 μm

EXAM PAPERS PRACTICE (1)

(Total 9 marks)