

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P73470A
Publications Code 4MA1_2HR_2406_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- awrt answer which rounds to
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from Questions 1, 6a, 10, 18, 20, 22 and 25 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method

Values in quotation marks must come from a correct method previously seen unless clearly stated otherwise.

Q	Working	Answer	Mark	Notes
1	eg $2 \times 2 \times 350$ or $2 \times 7 \times 100$ or $2 \times 5 \times 140$ or $5 \times 7 \times 40$ or $5 \times 5 \times 56$ or $(14 \times 100 =) 2 \times 7 \times 100$ or $(28 \times 50 = 4 \times 7 \times 50 =) 2 \times 2 \times 7 \times 50 =$ or $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3	 M1 for 2 correct stages in prime factorisation with 0 incorrect stages or at least 3 stages in prime factorisation with no more than 1 incorrect stage. Each stage gives 2 factors – may be in a factor tree or a table or listed eg 2, 2, 350 (see LHS for examples of the amount of work needed for the award of this mark). Example of 3 stages with 1 incorrect stage: 1400 = 10 × 14 = 2 × 5 × 2 × 7
	eg 2, 2, 2, 5, 5, 7 eg 2	$2^3 \times 5^2 \times 7$		M1 dep on M1 for $2 \times 2 \times 2 \times 5 \times 5 \times 7$ or $2^3, 5^2, 7$ or $2^3 + 5^2 + 7$ (Ignore 1's) (may be seen in a fully correct factor tree or ladder) A1 dep on M2 (do not allow 1 in the final
	Working required	2 ^ 3 ^ 1		answer) Can be in any order (allow 2 ³ . 5 ² . 7) but must be in index form as asked for. Total 3 marks

2 (a)	Allow translated translating translate Allow misspelling of the word eg translat	Translation	2	B1	for translation (with none of reflection, rotation, enlargement, mirrored, turned, move or flipped stated) NB Move with translation is acceptable
		$\begin{pmatrix} 3 \\ -5 \end{pmatrix}$		B1	for (vector =) $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$
(b)		Shape drawn at (-6, -1) (-4, -1) (-4, -2) (-5, -2)	2	B2	condone missing label If not B2 then
					B1 for a correct trapezium drawn with correct orientation in wrong position or 3 points plotted correctly)
					Total 4 marks

			for $x = 14$ and $y = 11$ Total 2 marks
			SC B1
			(B1 for $x = 11$ or $y = 14$)
3	(x =) 11 (and) (y =) 14	2	B2 for $x = 11$ and $y = 14$

4	(a)(i)		1, 2, 3, 5, 6, 7	1	B1	in any order with no repeats
	(a)(ii)		4, 5, 7, 8, 9, 10	1	B1	in any order with no repeats
	(b)	eg 1. 2 (or 3 or 2 and 3) is in both sets oe 2. A and B have 2 (or 3 or 2 and 3) oe 3. 2 (or 3 or 2 and 3) is common oe 4. 2 (or 3 or 2 and 3) is in the intersection oe 5. $A \cap B = \{2,3\}$ oe or $A \cap B = \{2\}$ oe or $A \cap B = \{3\}$ oe 6. They share 2 (or 3 or 2 and 3)oe 7. As 2 and/or 3 are factors of 6 and also prime numbers oe	2 (or 3 or 2 and 3) is a member of <i>A</i> and <i>B</i>	1	B1	for identifying the element 2 or 3 or 2 and 3 with a correct explanation to show they know the meaning of intersection and empty set If students mention a number that is common, it must be correct
		Allow sector for set				
		This is not an exhaustive list				
	(c)		1, 5, 6, 7	2	B2 (B1	for 1, 5, 6, 7 for three correct values with no more
						than one incorrect or for four correct values with no more than one incorrect)
						Total 5 marks

5	$\sqrt{81}$ (= 9) or 9 or 9 × 9 (= 81)		4	M1	for method to find the length of the side of the square (may be seen on the diagram)
	4 × "9" (= 36) oe			M1	for the perimeter of the square (the first M mark can be implied by 36)
	eg $\pi \times \text{"9"} (= 28.2(743) \text{ or } 9\pi)$			M1	for a correct expression for the circumference for using $2\pi r$ or πD (the first M mark can be implied by $28.2(743)$ rounded or truncated to 1 dp or by 9π)
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	64.3		A1	accept 64.26 – 64.3
					Total 4 marks

			1		
6 (a)	eg $2f = 12f - 51$ or		3	M1	for a correct first step – multiplying both sides by 3 correctly and expanding to find
	$\frac{f}{3} = \frac{4}{2}f - \frac{17}{2}$ or $\frac{f}{3} = 2f - \frac{17}{2}$ or $0.3f = 2f - 8.5$ or				2f = 12f - 51 or $2f = -51 + 12f$
	$f = 6f - \frac{51}{2}$ or $f = 6f - 25.5$ or				or
	$17 = 4f - \frac{2}{3}f \text{ or } 17 = 4f - 0.6f \text{ or } 17 = 4f - 0.7f \text{ or}$				writing the RHS as 2 terms each over 2
	$\frac{2}{3}f - 4f = -17 \text{ or } 0.6f - 4f = -17 \text{ or } 0.7f - 4f = -17$				(Allow decimals to 1dp or better – rounded or truncated)
	eg $-10f = -51$ or			M1	for a correct 2 term equation in the form $af = b$
	10f = 51 or				·
	$\frac{5f}{3} = \frac{17}{2}$ or				ft the following equations only $2f = 12f - 17$ oe
	$5f = \frac{51}{2}$ or				2f = 4f - 51 oe $6f = 12f - 51$ oe
	$17 = \frac{10f}{3}$ or				(Allow decimals to 1dp or better –
	3.3f = 17 or				rounded or truncated)
	$-\frac{10f}{3} = -17$ or				
	-3.3f = -17				
	Working required	$\frac{51}{10}$		A1	(dep on at least M1) oe
		10			

(1.)	1	1	D 1	
6 (b)	1	1	B1	
(c)	$3a^{3}h^{4}$	2	B2	for $3a^3h^4$ oe
				B1 for a product in the form ka^ph^q where 2 from k , p or q are correct (allow multiplication signs) eg $5a^3h^4$ or $\frac{12a^3h^4}{4}$ (Allow $3a^3$ or a^3h^4 or $3h^4$ as long as not added to any other term)
(d)	$4x^3y(5x^2+3y^3)$	2	B2	for $4x^3y(5x^2+3y^3)$ B1 for any correct factorisation with at least a 2 term factor outside the bracket eg $2x^3y(10x^2+6y^3)$ or $x^3y(20x^2+12y^3)$ or $2x(10x^4y+6x^2y^4)$ or $4y(5x^5+3x^3y^3)$ or $4x^3(5x^2y+3y^4)$ etc or the correct highest common factor and a 2 term expression with at most one incorrect term eg $4x^3y(5x^2+)$ or $4x^3y(+3y^3)$
				Total 8 marks

7	eg $3^{3} \text{ or } (3^{-2}) \times 3^{-5} \text{ or } \frac{3^{3}}{(3^{10})} \text{ or } \frac{(3^{5})}{3^{12}} \text{ or } \frac{(3^{-2})}{3^{5}} \text{ or } 3^{-12} (\times 3^{5}) \text{ oe}$ or $-2 + 5 - 10 \text{ oe or}$ $-12 + 5 \text{ oe or}$ $3 - 10 \text{ oe}$		2	M1 for a correct application of an index rule as a first step or a correct calculation for <i>n</i>
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	- 7		A1 Allow 3 ⁻⁷
				Total 2 marks

8	$1 - 0.17 \text{ or } 0.83 \text{ or } \frac{83}{100} \text{ or}$ 100(%) - 17(%) or 83(%) or $\frac{6225}{83} (= 75) \text{ oe}$		3	M1
	83 (= 73) 66			
	6225 ÷ "0.83" or 6225 ÷ "83" × 100 or 6225 × 100 ÷ "83" oe or 75 × 100			M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	7500		A1
				Total 3 marks

9	(a)		604 000	1	B1	
	(b)		7×10^{-5}	1	B1	
	(c)	$380\ 000\ \text{or}$ $3.8 \times 10^5\ \text{or}$ $38 \times 10^4\ \text{oe}$	7 × 10	2	M1	
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	2×10^5		A1	Accept 2.0×10^5 or 2.00×10^5 etc Accept a dot or a comma for a multiplication sign eg $2, 10^5$ 2.10^5 SC B1 for $200\ 000\ \text{or}\ 20 \times 10^4\ \text{or}\ 0.2 \times 10^6\ \text{oe}$ or 2×10^n where $n \neq 5$ when given as a final answer (not for incorrect simplification of the denominator)
						Total 4 marks

10	$23 \times 4.7 = 108.1$) oe		5	B1	(indep) May be embedded in
					$23 \times (4.7 + 2.5)$ (= 165.6)
	$\sin 30 = \frac{(x)}{5}$	$5\cos 30 \left(= \frac{5\sqrt{3}}{2} = 4.33 \right)$		M1	
	$\frac{(x)}{\sin 30} = \frac{5}{\sin 90} \text{ oe}$	and $(x^2 =)5^2 - 5\cos 30^2 = 6.25$			
	where $x =$ height of trapezium				
	$(x=)5\sin 30 (=2.5)$ oe	$(x=)\sqrt{5^2-"5\cos 30"^2}$ (= 2.5)		M1	
	or				
	$(x=)\frac{5}{\sin 90} \times \sin 30 (=2.5)$ oe				
		$(2.5) \times (23-11) + (11 \times 2.5) = 42.5$ oe or		M1	for a correct method to find the area of the trapezium
		$(2.5") + \left(\frac{1}{2} \times "2.5" \times "4.3"\right) (= 42.5)$ oe or			or the whole shape
	$(11 \times "2.5") + (\frac{1}{2} \times 5 \times (23 - 11) \times \sin 30$				
	(-	$(3'')$ $-\left(\frac{1}{2}\times"2.5"\times"4.3"\right)$ (= 42.5) oe or			
	$(23\times("2.5"+4.7))-(\frac{1}{2}\times"2.5"\times(23-$	$(11 - 4.3)$ $-\left(\frac{1}{2} \times 2.5 \times 4.3\right)$ oe			
	Working required		150.6	A1	dep on M1 awrt 150.6
					Allow 151 753
					Accept $\frac{753}{5}$
					Total 5 marks

		00			Total 7 marks
(d)		$\frac{11}{60}$	1	B1	Accept 0.18(333) or 18.(333)%
/ 1\	If a graph is drawn, answer is in the given range then award the marks	16.5 – 18.5	1		ft from their cf graph
. , ,	lines or marks indicating use of CF 35 or an indication on the time axis at the correct point (or they can just show the correct reading)				(ft from incorrect graph if method shown)
(c)	If a graph is drawn, answer is in the given range then award the marks 35 or	11.5 – 13.5	2	A1ft M1ft	Accept a single value in the range or ft from their cf graph for using or stating 35
(b)	Readings are [8 – 9.5] and [21 – 23] (but for this M1 these do not have to be correct if correct working is shown – eg lines or marks indicating a correct use of CF 15 and CF 45 with an indication on the time axis at the correct points (or they can just show the correct readings))		2	M1ft	time axis from cf 45 (or 45.75) and from cf 15 (or 15.25) oe ft from their cf graph
11 (a)	(NB: a 'bar chart' type graph scores zero marks) (ignore any part of the graph before (5, 6))		2	B2	for a fully correct cf graph – points at ends of intervals and joined with curve or line segments. (B1 for 5 correct points plotted and joined or B1 for 6 correct points plotted but not joined or B1 for 5 or 6 points plotted consistently within each interval (not at upper end) at their correct heights and joined eg plotted at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5

12 (a)	$(AD =)10 \times 1.5 (= 15)$ oe		2	M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	5		A1
(b)	$(2x+5)+(3x-5) = 1.5 \times (2x+5)$ oe or $5x = 1.5 \times (2x+5)$ oe or 5x = 3x + 7.5 oe or $\frac{3x-5}{2} = \frac{1}{2}$ oe		2	M1 for a correct equation for x
	$\frac{1}{2x+5} = \frac{1}{2}$ Working not required, so correct answer scores full marks (unless from obvious incorrect working)	3.75		A1 oe eg $\frac{15}{4}$ or $3\frac{3}{4}$
				Total 4 marks

13	$\frac{60}{360} \times 2 \times \pi \times r \text{ oe or}$ $\frac{1}{6} \times 2 \times \pi \times r \text{ oe}$		3	M1	for finding the length of the arc
	$\frac{60}{360} \times 2 \times \pi \times r'' + 2r \text{ oe or}$ $\frac{1}{6} \times 2 \times \pi \times r'' + 2r \text{ oe}$			M1	dep on M1 for a complete expression from correct working for a method for the perimeter
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$P = r\left(\frac{1}{3}\pi + 2\right)$		A1	oe eg $P = r(0.33\pi + 2)$ or $P = \left(\frac{1}{3}\pi + 2\right)r$ or $P = \left(2 + \frac{120}{360}\pi\right)r$ or $P = \left(\frac{120}{360}\pi + 2\right)r$
					Total 3 marks

14	$0.24 \div 0.8 = 0.3$) oe		3	M1	
	"0.3" \times (1 – 0.8) oe or			M1	for a complete method
	" 0.3 " × 0.2 oe or				
	$1 - (\text{``0.3''} \times 0.8 + 0.7 \times 0.8 + 0.7 \times 0.2)$ oe or				
	1 - 0.94 oe				
	Working not required, so correct answer	0.06		A1	3 6 07 60/
	scores full marks (unless from obvious				oe eg $\frac{3}{50}$ or $\frac{6}{100}$ or 6%
	incorrect working)				
					Total 3 marks

15	$360 \div 5 = 72$) oe or $(5-2)\times 180 \div 5 = 108$) oe or $540 \div 5 = 108$) oe		3	M1	for a method to find an exterior or interior angle for a regular pentagon
					Do not award this mark if 108 is assigned as an exterior angle or 72 is assigned as an interior angle
					Ignore angles on the diagram other than exterior/interior angles of the pentagon even if incorrectly labelled
	$\frac{1}{2} \times 6.5 \times 3 \times \sin[\text{angle DCE}] \text{ oe}$ or $(h =) 6.5 \times \sin[\text{angle DCE}] (= 6.18) \text{ and}$ $\frac{1}{2} \times 3 \times "6.18" \text{ oe}$			M1	ft their angle <i>DCE</i> when substituting in $\frac{1}{2} \times 6.5 \times 3 \times \sin \left[angle \ DCE \right]$ [angle <i>DCE</i>] means their angle <i>DCE</i> provided it is less than 90°
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	9.27		A1	accept $9.26 - 9.28$ SC B2 for $\frac{1}{2} \times 6.5 \times 3 \times \sin^{1}108 = 9.27$
					Total 3 marks

16 (i)	E	1	B1
(ii)	A	1	B1
			Total 2 marks

17	$(fg(k) =) \frac{3k+1}{2(3k+1)-4} \text{ oe or } \frac{3k+1}{2(3k+1)-4} = 2 \text{ oe or}$ $(fg(k) =) \frac{3k+1}{6k-2} \text{ oe or } \frac{3k+1}{6k-2} = 2 \text{ oe or}$ $x = 2(2x-4) \text{ or } x = 4x-8 \text{ or } x = \frac{8}{3} \text{ oe}$		3	M1	for a correct expression for $fg(k)$ or $fg(x)$ or for $f(x) = 2$ Allow x instead of k for all marks
	3k+1=2(6k-2) oe or 3k+1=2(2(3k+1)-4) oe or 3k+1=12k-4 oe or $3k+1=\frac{8}{3}$ oe			M1	dep on M1 for correctly removing the denominator to form a correct equation or for $g(k) = \frac{8}{3}$
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	5/9		A1	oe eg 0.55(555) rounded or truncated or 0.5 (must show recurring) Total 3 marks

18	eg $1000x = 306.306$ $x = 0.306$ OR eg $1000\ 000x = 306\ 306.()$ $1000x = 306.306$		2	M1	M1 for two correct algebraic equations involving recurring decimals that when subtracted give a whole number or terminating decimal (306 or 306 000 etc) with intention to subtract. eg $1000x = 306.306$ and $x = 0.306$ or $1000\ 000x = 306306.()$ and $1000x = 306.306$ (if recurring dots not shown in both numbers then showing at least one of the numbers to at least 6sf)
	eg 1000x - x = 306.306 0.306306 = 306 and $\frac{306}{999} = \frac{34}{111}$ or $999x = 306$ and $\frac{306}{999} = \frac{34}{111}$ OR eg $1000\ 000x - 1000x = 306306.() - 306.306 = 306\ 000$ and $\frac{306\ 000}{999\ 000} = \frac{34}{111}$ or $999\ 000x = 306\ 000$ and $\frac{306\ 000}{999\ 000} = \frac{34}{111}$	shown		A1	for completion to $\frac{34}{111}$ dep on M1
	Working required				Total 2 marks

19	18.5 or 19.5 or 1.45 or 1.55		3	B1	for one correct bound
					Allow 19.49 for 19.5
					Allow 1.549 for 1.55
				M1	for $UB_s \times UB_t$
	$(distance =) 19.5 \times 1.55$				where
					$19 < UB_s$, 19.5 and $1.5 < UB_p$, 1.55
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	30.2		A1	accept 30.225 or 30.23 answer must come from correct figures (19.5, 1.55)
					Total 3 marks

20	eg		4	M1	first step to finding the critical values - if factorising
20	(3x+4)(2x-5)		7	1411	(in the form $(ax + b)$ where a and b are integers), allow
	or				brackets which expanded give 2 out of 3 terms correct
	02				(if using formula or completing the square allow one
	$-7 \pm \sqrt{(-7)^2 - 4 \times 6 \times (-20)}$				sign error and some simplification – allow as far as
	$(x=)$ $\frac{7 \pm \sqrt{(-7)^2 - 4 \times 6 \times (-20)}}{2 \times 6}$ oe				-
	or				$\frac{7 \pm \sqrt{49 + 480}}{12}$ oe or
	$\left[\left(\begin{array}{cc} 7 \end{array} \right)^2 \left(\begin{array}{cc} 7 \end{array} \right)^2 \right]$				12
	$6\left[\left(x-\frac{7}{12}\right)^2-\left(\frac{7}{12}\right)^2\right]-20 \text{ oe}$				$6\left(x - \frac{7}{12}\right)^2 - \frac{529}{24}$ oe or $\left(x - \frac{7}{12}\right)^2 - \frac{529}{144}$ oe
	$(x =) -\frac{4}{3}$ and $\frac{5}{2}$ oe			A1	dep on M1 for two correct critical values
	$(x =) {3}$ and $\frac{-}{2}$				Accept –1.3
					May use $<$, \le , $>$ or \ge instead of $=$
				M1ft	(dep on M1 and two critical values found)
					for $x < a$ and $x > b$ where a is their lower critical value
					and b is their upper critical value
					or $x > \frac{5}{2}$ oe
					of $x > \frac{1}{2}$ oc
					or $x < -\frac{4}{3}$ oe
					or $x < \frac{1}{3}$
					4 5
					or $-\frac{4}{3} > x > \frac{5}{2}$ oe
	Working required	4		A1	oe dep on previous M1
	G - 1	$x < -\frac{\pi}{3}$			Accept –1.3 or
		$x < -\frac{4}{3}$ $x > \frac{5}{2}$			$\left(-\infty, -\frac{4}{3}\right), \left(\frac{5}{2}, (+)\infty\right) \text{ or } \left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{5}{2}, (+)\infty\right)$
					Do not ISW
					Total 4 marks

eg $ \begin{bmatrix} \frac{3}{8} \\ \frac{3}{8} \end{bmatrix} \times m = -1 \text{ oe } $ $ or (m =) "-\frac{8}{3}" \text{ oe } $ $ or \frac{5-(-3)}{3-6} \left(= -\frac{8}{3} = -2.6 (666) \right) $ $ or \frac{5-13}{3-0} \left(= -\frac{8}{3} = -2.6 (666) \right) $ $ eg 5 = "-\frac{8}{3}" \times 3 + c \text{ or } c = 13 \text{ or } y = "-\frac{8}{3}" x + 13 $ $ or y - 5 = "-\frac{8}{3}" (x - 3) \text{ oe } $ $ or y3 = "-\frac{8}{3}" (x - 6) \text{ oe } $ $ or y - 13 = "-\frac{8}{3}" (x - 0) \text{ oe or } y - 13 = "-\frac{8}{3}" x \text{ oe } $	21	eg $\frac{5-2}{3-(-5)} \left(= \frac{3}{8} = 0.375 \right)$ oe or $(2 = -5m + c \text{ and } 5 = 3m + c \text{ leading to})$ $(m =) \frac{3}{8} (= 0.375)$ or $(C =) (6, -3)$ or $(0, 13)$		4	M1	for a method to find the gradient of <i>AB</i> or for finding the possible coordinates of <i>C</i>
or $y-5="-\frac{8}{3}"(x-3)$ oe or $y-3="-\frac{8}{3}"(x-6)$ oe or $y-13="-\frac{8}{3}"(x-0)$ oe or $y-10="-\frac{8}{3}"(x-0)$ or $y-10="-\frac{8}{3}"(x-0)$ oe or $y-10="-\frac{8}{3}"(x-0)$ or $y-10="-\frac$		eg $\left[\frac{3}{8}\right] \times m = -1 \text{ oe}$ or $(m =) " - \frac{8}{3} "$ oe or $\frac{5 - (-3)}{3 - 6} \left(= -\frac{8}{3} = -2.6 (666) \right)$			M1ft	Allow perpendicular gradient to be truncated or rounded to 1 dp
full marks (unless from obvious incorrect eg. $16x+6y=78$ or $-8x-3y+39=0$ or $3y=-8x+39$		or $y-5 = "-\frac{8}{3}"(x-3)$ oe or $y-3 = "-\frac{8}{3}"(x-6)$ oe			M1ft	perpendicular gradient) for substitution to find 'c' or to find an equation for BC If students find the coordinates of D $[(-2, -6) \text{ or } (-8, 10)] \text{ then allow for}$ this mark $y6 = "-\frac{8}{3}"(x2) \text{ oe or}$
		full marks (unless from obvious incorrect	8x + 3y - 39 = 0		A1	eg. $16x + 6y = 78$ or $-8x - 3y + 39 = 0$
		working)				

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2.	$eg x^2 + (3x-1)^2 = 3x-1+11$	(1)2		5	M1 for substitution of $y = 3x - 1$ (or
$10x^2 - 9x - 9(=0) \text{ oe or} $ $10x^2 - 9x - 9(=0) \text{ oe or} $ $10x^2 - 9x - 9 \text{ oe or} $ $10x^2 - 9x - 9 \text{ oe or} $ $10x^2 - 9x - 9 \text{ oe or} $ $10x^2 - 9x - 9 \text{ oe or} $ $10x^2 - 9x - 9 \text{ oe or} $ $10y^2 - 7y - 98 \text{ oe or} $ $10y^2 - 7y = 98 \text{ oe or} $ $10y^2 - 98 + 7y \text{ oe} $ $(5x + 3)(2x - 3)(=0) $ $\mathbf{or} $ $(x = \frac{9 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}}{2 \times 10} $ $\mathbf{or} $ $10\left[\left(x - \frac{9}{20}\right)^2 - \left(\frac{9}{20}\right)^2\right] - 9(=0) $ $\mathbf{or} $ $10\left[\left(x - \frac{9}{20}\right)^2 - \left(\frac{9}{20}\right)^2\right] - 9(=0) $ $\mathbf{or} $ $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2} $ $\mathbf{or} $ $(y = \frac{7 \pm \sqrt{(-7)^2 - 4 \times 10 \times (-98)}}{2 \times 10} $ $\mathbf{or} $ $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2} $ $\mathbf{or} $ $(y = \frac{7 \pm \sqrt{(-7)^2 - 4 \times 10 \times (-98)}}{2 \times 10} $ $\mathbf{or} $ $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2} $ $\mathbf{or} $ $(x = \frac{-14}{5} \text{ and } y = 3.5 = \frac{7}{2} $ $\mathbf{or} $ $(x = \frac{-2.8^n + 1}{3} (= -0.6) $ $\mathbf{and} $ $(y = \frac{3 \times (-0.6^n - 1)}{3 \times (-1.5^n - 1)} (= 3.5) $ $\mathbf{or} $ $(x = \frac{-3.5^n + 1}{3} (= 1.5) $ $\mathbf{or} $ $(x = \frac{-0.6}{9 - 2.8} \times 1.5 $ $x = -0.6 $ $y = -2.8 \times 1.5 $ $y = 3.5 $ $x = 1.5 $ $y = 3.5 $ Al oe dep on M2 for 4 correct values correctly shown as coordinates		eg x + (5x-1) = 5x-1+11	$\left \text{ eg} \left(\frac{y+1}{y} \right) + y^2 = y+11 \right $			
$ \begin{array}{c} 10x^2-9x-9(=0) \text{ oe or} \\ 10x^2-9x-9(=0) \text{ oe or} \\ 10x^2-9x-9 \text{ oe or} \\ 10y^2-7y-98 \text{ oe or} \\ 10y^2-7y-98 \text{ oe or} \\ 10y^2-98+7y \text{ oe} \\ \end{array} $						$x = \frac{y + 1}{2}$) into $x^2 + y^2 = y + 11$ to obtain an
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						3
		$10x^2 - 9x - 9 = 0$ oe or	$10y^2 - 7y - 98 = 0$ oe or			
$10x^2 = 9 + 9x \text{ oe}$ $10y^2 = 98 + 7y \text{ oe}$ $10y^2 = 74 + 2x + 2x + 2x + 2x + 3x + 3x + 2x + 2x$		$10x^2 - 9x = 9$ oe or	$10v^2 - 7v = 98$ or or			
$(5x+3)(2x-3)(=0)$ or $(x=)\frac{9\pm\sqrt{(-9)^2-4\times10\times(-9)}}{2\times10}$ or $10\left[\left(x-\frac{9}{20}\right)^2-\left(\frac{9}{20}\right)^2\right]-9(=0)$ or $x=-0.6 \text{ and } x=1.5=\frac{3}{2}$ $(y=)\frac{3\times"-0.6"-1}{3}(=3.5)$ $(x=)\frac{9\times3\times"-1.5"-1}{3}(=3.5)$ $(x=)\frac{3\times"-0.6"}{3}(=3.5)$ $(x=)\frac$		$10x^2 = 9 + 9x$ oe				
$ \begin{array}{c} (5x+3)(2x-3)(=0) \\ \textbf{or} \\ (x=) \frac{9\pm\sqrt{(-9)^2-4\times10\times(-9)}}{2\times10} \\ \textbf{or} \\ 10 \bigg[\bigg(x-\frac{9}{20} \bigg)^2 - \bigg(\frac{9}{20} \bigg)^2 \bigg] - 9(=0) \\ \textbf{or} \\ x=-0.6 \text{ and } x=1.5 = \frac{3}{2} \\ \textbf{or} \\ (y=) \frac{3\times"-0.6"-1 \ (=-2.8)}{and} \\ (y=) \frac{3\times"1.5"-1 \ (=3.5)}{and} \\ x=\frac{3}{2} \\ \end{array} \begin{array}{c} (5y+14)(2y-7)(=0) \\ \textbf{or} \\ (y=) \frac{7\pm\sqrt{(-7)^2-4\times10\times(-98)}}{2\times10} \\ \textbf{or} \\ y=-\frac{7\pm\sqrt{(-7)^2-4\times10\times(-98)}}{2\times10} \\ \textbf{or} \\ y=-\frac{7\pm\sqrt{(-7)^2-4\times10\times(-98)}}{2\times10} \\ \textbf{or} \\ y=-\frac{7\pm\sqrt{(-7)^2-4\times10\times(-98)}}{2\times10} \\ \textbf{or} \\ y=-\frac{7\pm\sqrt{49+3920}}{20} \\ \textbf{or} \\ \textbf{or} \\ \textbf{or} \\ y=-2.8 = -\frac{14}{5} \text{ and } y=3.5 = \frac{7}{2} \\ \textbf{or} \\ \textbf{or} \\ y=-2.8 = -\frac{14}{5} \text{ and } y=3.5 = \frac{7}{2} \\ \textbf{or} \\ $			$10y^2 = 98 + 7y$ oe			` ′
$ \begin{array}{c} \textbf{or} \\ (x=) \frac{9\pm \sqrt{(-9)^2-4\times 10\times (-9)}}{2\times 10} \\ \textbf{or} \\ 10 \left[\left(x-\frac{9}{20}\right)^2 - \left(\frac{9}{20}\right)^2 \right] - 9(=0) \\ \textbf{or} \\ x=-0.6 \text{ and } x=1.5=\frac{3}{2} \\ \textbf{or} \\ (y=) \frac{7\pm \sqrt{(-7)^2-4\times 10\times (-98)}}{2\times 10} \\ \textbf{or} \\ x=-0.6 \text{ and } x=1.5=\frac{3}{2} \\ \textbf{or} \\ \textbf{or} \\ x=-0.6 \text{ and } x=1.5=\frac{3}{2} \\ \textbf{or} \\ \textbf{or} \\ y=-2.8=-\frac{14}{5} \text{ and } y=3.5=\frac{7}{2} \\ \textbf{or} \\ \textbf{or} \\ x=-0.6 \\ \textbf{or} \\ \textbf{or} \\ x=-0.6 \\ \textbf{or} \\ \textbf{or} \\ x=-0.6 \text{ and } x=1.5=\frac{3}{2} \\ \textbf{or} \\ $						
$(x =) \frac{9 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}}{2 \times 10}$ or $10 \left[\left(x - \frac{9}{20} \right)^2 - \left(\frac{9}{20} \right)^2 \right] - 9(= 0)$ or $10 \left[\left(x - \frac{9}{20} \right)^2 - \left(\frac{9}{20} \right)^2 \right] - 9(= 0)$ or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) \frac{7 \pm \sqrt{(-7)^2 - 4 \times 10 \times (-98)}}{2 \times 10}$ or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) \frac{7 \pm \sqrt{(-7)^2 - 4 \times 10 \times (-98)}}{2 \times 10}$ or $y = -2.8 = -\frac{14}{5} \text{ and } y = 3.5 = \frac{7}{2}$ $(x =) \frac{7 \pm \sqrt{49 + 3920}}{20}$ or if factorising allow brackets which expanded give 2 out of 3 terms correct) or correct values for x or correct values for y (Allow incorrect labels for x or y for this mark only) $(y =) 3 \times \text{``} -0.6\text{''} -1 \text{(=-2.8)}$ and $(y =) 3 \times \text{``} 1.5\text{''} -1 \text{(=3.5)}$ $(x =) \frac{\text{''} -2.8\text{''} +1}{3} \text{(=-0.6)}$ and $(x =) \frac{\text{'''} 3.5\text{''} +1}{3} \text{(=1.5)}$ $x = -0.6$ $y = -2.8$ $x = 1.5$ $y = 3.5$ Al oe dep on M2 for 4 correct values correctly labelled or correctly shown as coordinates		(5x+3)(2x-3)(=0)	(5y+14)(2y-7)(=0)			-
$(x =) \frac{9 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}}{2 \times 10}$ or $10 \left[\left(x - \frac{9}{20} \right)^2 - \left(\frac{9}{20} \right)^2 \right] - 9(=0)$ or $10 \left[\left(y - \frac{7}{20} \right)^2 - \left(\frac{7}{20} \right)^2 \right] - 98(=0)$ or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) \frac{7 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}}{2 \times 10}$ or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) \frac{7 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}}{20} - 98(=0)$ or $y = -2.8 = -\frac{14}{5} \text{ and } y = 3.5 = \frac{7}{2}$ or correct values for x or correct values of x or y into one of the two given equations or fully correct values for the other variable Working required $x = -0.6$ $y = -2.8$ $x = 1.5$ $y = 3.5$ Al oe dep on M2 for 4 correct values correctly labelled or correctly shown as coordinates		or	or			
or $10\left[\left(x-\frac{9}{20}\right)^2-\left(\frac{9}{20}\right)^2\right]-9(=0)$ or $10\left[\left(y-\frac{7}{20}\right)^2-\left(\frac{7}{20}\right)^2\right]-98(=0)$ or if factorising allow brackets which expanded give 2 out of 3 terms correct) or correct values for x or correct values of x or y or this mark only) $(y=3)\times(-0.6)^2-1 (=-2.8)$ and $(y=3)\times(-0.6)^2-1 (=-3.5)$ $(x=3)\times(-0.6)\times(-0.6)$ and $(x=3)\times(-0.6)\times(-0.6)\times(-0.6)$ $x=-0.6$ $y=-2.8$ $x=1.5$ $y=3.5$ $x=-0.6$ Al oe dep on M2 for 4 correct values correctly labelled or correctly shown as coordinates		$9 \pm \sqrt{(-9)^2 - 4 \times 10 \times (-9)}$	$7 \pm \sqrt{(-7)^2 - 4 \times 10 \times (-98)}$			
or $10\left[\left(x-\frac{9}{20}\right)^2-\left(\frac{9}{20}\right)^2\right]-9(=0)$ or $10\left[\left(y-\frac{7}{20}\right)^2-\left(\frac{7}{20}\right)^2\right]-98(=0)$ or if factorising allow brackets which expanded give 2 out of 3 terms correct) or correct values for x or correct values of x or y for this mark only) $(y=3)\times(-0.6)^2-1 (=-2.8)$ and $(y=3)\times(-0.6)^2-1 (=-3.5)$ $(x=)\frac{(x-2.8)^2+1}{3} (=-0.6)$ $x=-0.6$ $y=-2.8$ $x=1.5$ $y=3.5$ $x=-0.6$ Al oe dep on M2 for 4 correct values correctly shown as coordinates		$(x=)$ $\xrightarrow{2 \times 10}$	$(y=)$ $\xrightarrow{2\times10}$			$9 \pm \sqrt{81 + 360}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2/10	27.10			$-$ allow as far as eg ${20}$ or
or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) 3 \times "-0.6" - 1 (= -2.8)$ and $(y =) 3 \times "1.5" - 1 (= 3.5)$ $(x =) "3.5" + 1 (= 1.5)$ $(x =) "3.5" + 1 ($		l *				7 10 2020
or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) 3 \times "-0.6" - 1 (= -2.8)$ and $(y =) 3 \times "1.5" - 1 (= 3.5)$ $(x =) \frac{"-2.8"+1}{3} (= 1.5)$ $(x =) \frac{"-3.5"+1}{3} (= 1.5)$ $(x =) "-3.5"$		$ 10 (x-\frac{9}{9}) - (\frac{9}{9}) -9(=0)$	$ 10 (v - \frac{7}{2}) - (\frac{7}{2}) -98(=0) $			$\frac{7 \pm \sqrt{49 + 3920}}{2}$
or $x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $(y =) 3 \times "-0.6" - 1 (= -2.8)$ and $(y =) 3 \times "1.5" - 1 (= 3.5)$ $(x =) \frac{"-2.8"+1}{3} (= 1.5)$ $(x =) \frac{"-3.5"+1}{3} (= 1.5)$ $(x =) "-3.5"$		$\begin{bmatrix} 10 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 20 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 10 \\ 5 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 20 \end{bmatrix}$ $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$			20
$x = -0.6 \text{ and } x = 1.5 = \frac{3}{2}$ $y = -2.8 = -\frac{14}{5} \text{ and } y = 3.5 = \frac{7}{2}$ $y = -2.8 = -\frac{14}{5} \text{ and } y = 3.5 = \frac{7}{2}$ $(x = -0.6) \text{ and } x = 1.5 = \frac{3}{2}$ $(x = -0.6) \text{ and } x = 1.5 = \frac{3}{2}$ $(x = -0.6) \text{ and } (x = -0.6)$ $(y = -0.6) \text{ and } (x = -0.6)$ $(y = -0.6) \text{ and } (x = -0.6)$ $(x = -0.6) $						<u>e</u>
Working required Correct values for y (Allow incorrect labels for x or y for this mark only)						,
Working required Correct values for y (Allow incorrect labels for x or y for this mark only)		$x = -0.6$ and $x = 1.5 = \frac{3}{2}$	$y = -2.8 = -\frac{14}{5}$ and $y = 3.5 = \frac{7}{2}$			
$(y =) 3 \times \text{``}-0.6\text{''}-1 (=-2.8)$ $(y =) 3 \times \text{``}1.5\text{''}-1 (=3.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(y =) 3 \times \text{``}1.5\text{''}-1 (=3.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(x =) \frac{\text{''}-3.5\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} ($		2	5 2			,
$(y =) 3 \times \text{``}-0.6\text{''}-1 (=-2.8)$ and $(y =) 3 \times \text{``}1.5\text{''}-1 (=3.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ and $(x =) \frac{\text{''}3.5\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=1.5)$ $(x =) \frac{\text{''}-2.8\text{''}+1}{3} (=-0.6)$ $(x =) \frac{\text{''}-2.8$						(Allow incorrect labels for x or y for this mark
and $(y =) 3 \times "1.5" - 1 (=3.5)$ $(x =) {3} (=-0.6)$ $(y =) 3 \times "1.5" - 1 (=3.5)$ $(x =) {3} (=-0.6)$ $(x =$						J /
$(y =) 3 \times "1.5" - 1 (=3.5)$ $working required$ $x = -0.6$ $y = -2.8$ $x = 1.5$ $y = 3.5$ given equations or fully correct values for the other variable A1 oe dep on M2 for 4 correct values correctly labelled or correctly shown as coordinates			$(r-) = \frac{-2.8}{+1} (-0.6)$			
working required $x = -0.6$ $y = -2.8$ $x = 1.5$ $y = 3.5$ or fully correct values for the other variable $x = -0.6$ A1 oe dep on M2 for 4 correct values correctly labelled or correctly shown as coordinates			3 (0.0)			,
Working required $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(y =) 3 \times \text{``}1.5\text{''} - 1 (=3.5)$	$\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			1
y = -2.8 $x = 1.5$ $y = 3.5$ labelled or correctly shown as coordinates			and $(x =) \frac{3}{3} (= 1.5)$			or fully correct values for the other variable
y = -2.8 $x = 1.5$ $y = 3.5$ labelled or correctly shown as coordinates		Working required		x = -0.6		A1 oe dep on M2 for 4 correct values correctly
x = 1.5 $y = 3.5$				y = -2.8		= *
y = 3.5				•		
Total 5 marks				y = 3.5		
				•		Total 5 marks

23 (i)	(6, 7)	1	B1
(ii)	(2, -3)	1	B1
			Total 2 marks

24 (a)	eg $\frac{1}{3} \times \pi \times x^2 \times 3x \left(=\pi x^3\right) \text{ oe or } \frac{1}{2} \times \frac{4}{3} \times \pi \times x^3 \left(=\frac{4}{6} \pi x^3 = \frac{2}{3} \pi x^3\right) \text{ oe or }$		4	M1	for an expression for the volume of the cone or the hemisphere or the sphere
	$\frac{4}{3} \times \pi \times (kx)^3$ oe				NB Ignore missing brackets around kx for this mark Allow r for x for all M marks
	eg $\frac{4}{3} \times \pi \times (kx)^{3} = 12.5 \times \left(\frac{1}{2} \times \frac{4}{3} \pi x^{3} + \frac{1}{3} \pi x^{2} (3x)\right) \text{ oe or}$ $\frac{4}{3} \times \pi \times (kx)^{3} = 12.5 \left(\frac{2}{3} \pi x^{3} + \pi x^{3}\right) \text{ oe or } \frac{4}{3} \times \pi \times (kx)^{3} = 12.5 \times \frac{5}{3} \pi x^{3} \text{ oe}$ or $\frac{4}{3} \times \pi \times (kx)^{3} = \frac{125}{6} \pi x^{3} \text{ oe}$			M1	for a correct equation for the volumes NB If $(kx)^3$ not expanded at this stage then must see brackets
	$\operatorname{eg}(k^{3} =) \frac{\frac{125}{6}\pi}{\frac{4}{3}\pi} \operatorname{oe} \operatorname{or}(k^{3} =) \frac{125}{8} \operatorname{oe} \operatorname{or}(k =) \sqrt[3]{\frac{125}{8}} \operatorname{oe}$ $k^{3}x^{3} = \frac{12.5 \times \frac{5}{3}\pi x^{3}}{\frac{4}{3}\pi} \operatorname{oe} \operatorname{or} kx = \frac{\sqrt[3]{12.5 \times \frac{5}{3}\pi x^{3}}}{\sqrt[3]{\frac{4}{3}\pi}} \operatorname{or} kx = \sqrt[3]{\frac{125x^{3}}{8}} \operatorname{oe}$			M1	for a correct calculation for k or k^3 or for a correct equation for kx or k^3x^3
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	2.5		A1	oe
(b)		64	1	B1	
					Total 5 marks

25		8 a + 2h	1	B1oe	must be in simplest form
(a) (i)		$\frac{8}{5}\mathbf{a} + 3\mathbf{b}$			eg $1.6\mathbf{a} + 3\mathbf{b}$ or $\frac{8\mathbf{a} + 15\mathbf{b}}{5}$
		$\frac{9}{4}$ b -2 a	1		must be in simplest form
(ii)		$\frac{-\mathbf{b}}{4}$			eg $2.25\mathbf{b} - 2\mathbf{a}$ or $\frac{9\mathbf{b} - 8\mathbf{a}}{4}$ ft their answers in (a)
(b)	$\operatorname{eg}\left(\overrightarrow{OM} = \right) 2\mathbf{a} + \frac{3}{4}\mathbf{b} \operatorname{oe} \operatorname{or}\left(\overrightarrow{OY} = \right) k \left(\frac{8}{5}\mathbf{a} + 3\mathbf{b''} \right) \operatorname{oe} \operatorname{or}\left(\overrightarrow{YN} = \right) (1 - k) \left(\frac{8}{5}\mathbf{a} + 3\mathbf{b''} \right)$		4	M1ft	ft their answers in (a) for a correct expression for a
	7				vector eg \overrightarrow{OM} or \overrightarrow{OY} or \overrightarrow{YN}
	oe or $(\overrightarrow{OY} =) 2\mathbf{a} + \frac{3}{4}\mathbf{b} + \lambda \left(\frac{9}{4}\mathbf{b} - 2\mathbf{a''} \right)$ oe or				Students may use other
					variations eg \overrightarrow{MO} or \overrightarrow{YO} or \overrightarrow{NY}
	$(\overrightarrow{OY} =) 3\mathbf{b} - \mu \left(\sqrt[9]{4} \mathbf{b} - 2\mathbf{a''} \right)$ oe				For all M marks
					Allow any letter for $k \in n$, λ Allow any letter for $\lambda \in \mu$
	eg $(\overrightarrow{OY} =)k("\frac{8}{5}\mathbf{a} + 3\mathbf{b}")$ oe and $2\mathbf{a} + \frac{3}{4}\mathbf{b} + \lambda("\frac{9}{4}\mathbf{b} - 2\mathbf{a}")$ oe or			M1ft	for 2 independent expressions for the same vector (may be embedded in a correct equation)
	$(\overrightarrow{OY} =)k\left(\frac{8}{5}\mathbf{a} + 3\mathbf{b''}\right)$ oe and $3\mathbf{b} - \mu\left(\frac{9}{4}\mathbf{b} - 2\mathbf{a''}\right)$ oe or				embedded in a correct equation)
	$(\overrightarrow{OM} =)2\mathbf{a} + \frac{3}{4}\mathbf{b} \text{ oe and } k \left(\frac{8}{5}\mathbf{a} + 3\mathbf{b} \right) - \lambda \left(-2\mathbf{a} + \frac{9}{4}\mathbf{b} \right) \text{ oe or}$				
	$(\overrightarrow{YN} =)(1-k)("\frac{8}{5}\mathbf{a} + 3\mathbf{b}")$ oe and $-\lambda("-2\mathbf{a} + \frac{9}{4}\mathbf{b}") + \frac{3}{4}(3\mathbf{b}) - \frac{1}{5}(2\mathbf{a})$ oe or				
	$(\overrightarrow{OY} =) 2\mathbf{a} + \frac{3}{4}\mathbf{b} + \lambda \left(\frac{9}{4}\mathbf{b} - 2\mathbf{a''} \right)$ and $3\mathbf{b} - \mu \left(\frac{9}{4}\mathbf{b} - 2\mathbf{a''} \right)$				
	eg $3k = \frac{3}{4} + \frac{9}{4} \left(1 - \frac{4}{5}k \right)$ oe or $3k = 3 - \frac{9}{4} \left(\frac{4}{5}k \right)$ oe or			M1	a correct equation for k or the correct value of λ or μ (cannot assume that Y is the midpoint of
	$4k = 3\left(\frac{5-4k}{5}\right) + 1$ oe or $\lambda = 0.5$ oe or $\mu = 0.5$ oe				MR)
	Question requires a complete vector method to be awarded marks	$\frac{5}{8}$		A1oe	dep on M2
		8			TD 4.16
					Total 6 marks

26	$(3x-5)(x+2)$ $4(3x^2-1)$	+x-10)-(3x-5)(4x-1)		4	M1	for correctly factorising
	4(3x)	$\frac{(4x-10)-(3x-5)(4x-1)}{3x^2+x-10}$ oe		-	1,11	$3x^2 + x - 10$ to give
		$3x^2 + x - 10$				(3x-5)(x+2)
	or	45				(may be seen later on in
	$\frac{27x-}{3}$	-45				working)
	$3x^2 + x$:-10				OR
						combining 2 fractions into a
						correct single fraction
ı	$\frac{4x-1}{4(3x^2-1)}$	+x-10)- $(3x-5)(4x-1)$			M1	for inverting and cancelling
	x+2	$\frac{(3x-5)(4x-1)}{(3x-5)(x+2)}$				giving a correct fraction
	I implied tiret Mill	, , , , , ,				OR
	or $\frac{2}{\sqrt{2}}$	$\frac{(7x-45)}{(-5)(x+2)}$				for a correct single fraction
	(3x)	-5)(x+2)				where the denominator is factorised
	1(, 2) (4 1) 0(2	5)			M1	for a correct single fraction or
	$\frac{4(x+2)-(4x-1)}{(4x-1)}$	$\frac{(x-5)}{(x+2)}$			IVII	two correct fractions with a
	x+2 $(3x-5)$	(x+2)				common denominator
	or					
	4x+8-4x+1					OR
	x+2					
	or					for a correct fully factorised
	$\frac{4(x+2)}{2} - \frac{4x-1}{2}$					single fraction
	x+2 $x+2$					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	$\frac{4x+8}{2} - \frac{4x-1}{2}$					
	x+2 $x+2$	4 C. 11 1	0		A 1	
	Working not required, so correct was from abvious incorrect w		9		A1	
	(unless from obvious incorrect w	orking)	$\overline{x+2}$			m 4 1 4
						Total 4 marks