

Mark Scheme (Results)

Summer 2013

GCSE Mathematics (Linear) 1MA0 Foundation (Non-Calculator) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UG037221 All the material in this publication is copyright © Pearson Education Ltd 2013

NOTES ON MARKING PRINCIPLES

- **1** All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- 2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- 3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- 4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- **5** Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- 6 Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate.
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

If there is no answer on the answer line then check the working for an obvious answer.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra. Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 - 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme
M1 – method mark A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion) indep – independent isw – ignore subsequent working

PAPE	PAPER: 1MA0_1F								
Que	stion	Working	Answer	Mark	Notes				
1	(a)		В	1	B1 cao				
	(b)		118°	1	B1 Accept 116 – 120				
	(c)		10.5 cm	1	B1 Accept $10.3 - 10.7$ (or $103 - 107$ if cm crossed out and replaced by mm)				
	(-)			_					
2	(2)		12	1	B1 cao				
2	(a)		12	1					
	(b)		9	2	M1 for complete method to find total number of white bread sandwiches or				
					28 or total number of brown bread sandwiches or 19				
					Al cao				
					OR				
					M1 for method to find difference between white and brown ham or ± 1 or				
					white and brown egg or ± 8 (may result in positive or negative number)				
					A1 cao				
3	(a)		2	1	B1 cao				
			D.CC	1	DI				
	(b)		Puffin	1	BI cao				
	(c)	579 - 449	f130	2	M1 for identifying 579 and 449 (may be indicated in the table)				
	(0)		2150	2	A1 cao				
	(d)		3.6m	3	M1 for 30 × 12 or digits 36				
					M1 (dep) for "360" ÷ 100				
					A1 for 3.6 or 3.60 or 3m 60cm				
					OP				
					UN				
					M1 for $30 \div 100 (=0.3)$				
					M1 (dep) for " 0.3 "× 12				
					A1 for 3.6 or 3.60 or 3m 60cm				

		PAPER: 1MA0_1F								
Ques	stion	Working	Answer	Mark	Notes					
4	(a)	<u> </u>	8	1	B1 cao					
	(b)		- 12	1	B1 cao					
5		Eg. 65 - 17 + 29 = 77 80 - "77"	3	3	M1 for 77 or a correct start to the process using at least two of the given figuresM1 for a complete correct methodA1 cao					
6	(a)		34	1	B1 cao					
	(b)		10 45	1	B1 10 45 accept any correct time notation, ignore am or pm					
7			1.83 m or	2	M1 for 178 + 5 or 1.78 + 0.05 or 183 or 1.83					
			183 cm		A1 for 1.83 m or 183 cm (units must be correct)					
8	(a)		14 cm	2	B1 for 14 cao B1 (indep) for cm					
	(b)		3 by 3 square	1	B1 cao					
9	(a)(i)		(-2, -3)	2	B1 cao					
	(a)(ii)		Cross at $(5, 2)$		B1 professional judgement					
	(b)		y = 3	1	B1 for correct line (at least 2cm spanning the <i>y</i> axis) with professional judgement					
10			BA, BP,	2	M1 for at least 3 correct pairs					
			BO, AP, AO PO		A1 for all 6 pairs, no extras or repeats					

PAPER	1MA0_	_1F			
Question		Working	Answer	Mark	Notes
*11			Shop B	4	Considering cost of all pens
QWC			with working		M1 for a correct start
					eg. $30 \div 3$ or 10 or 3×10 or $30 \div 5$ or 5×6 or 6 or list of at least six multiples of 3 or 5
					M1 for complete correct method to find total cost for shop A or complete correct method to find total cost for shop B eg. for A : $30\div3\times2$ or 10×2 or list of multiples of 3 to 30 with (£)20 or 3×10 with (£)20 eg. for B : $30\div5\times3$ or 6×3 or list of multiples of 5 to 30 with (£)18 or 5×6 with (£)18
					A1 for (£)20 and (£)18 C1 (dep on M1) ft for statement giving "Shop B" with two comparable figures [SC : B1 for (£)18 and (£)20 without working]
					OR
					Considering cost of one pen (or could be for 15 pens)
					M1 for correct method to find cost of one pen in shop A or correct method to find cost of one pen in shop B
					M1 for correct method to find cost of one pen in shop A and correct method to find cost of one pen in shop B
					A1 for 66.6p rounded or truncated to at least 2 sig figs eg. 66(p) or 67(p) and 60(p)
					C1 (dep on $M1$) ft for statement giving "shop B" with two comparable figures
					[SC : B1 for 66.6p rounded or truncated to at least 2 sig figs eg. 66(p) or 67(p) and 60(p) without working]

PAPER	PAPER: 1MA0_1F							
Que	stion	Working	Answer	Mark	Notes			
12	(a)		50	3	M1 for $\frac{6}{8} \times 80$ oe (= 60) or $\frac{1}{8} \times 80$ oe (= 10)			
					(may be seen on gauges eg. 10 by $\frac{1}{8}$ position or 60 by $\frac{6}{8}$ position on either gauge)			
					M1 (dep) for a complete correct method $eg."60" - "10"$ or $5 \times "10"$ A1 for 50 (accept answers in the range 49 - 51)			
					or 6 1 5			
					M1 for $\frac{1}{8} - \frac{1}{8} \left(= \frac{3}{8} \right)$			
					M1 (dep) for $\frac{5}{8} \times 80$			
					A1 for 50 (accept answers in the range 49 - 51)			
	(b)		12	2	M1 for 180 ÷ 15 oe			
					A1 cao			
*13			No and eg.	3	M1 for adding at least 3 of 1.25, 1.15, 85, 85			
QWC			£4.10, £4		A1 for $4.1(0)$ or 410			
			or top		given and correct) or for correct statement referring to difference			
					eg. 10p short (units must be given and correct)			
					OR			
					M1 for finding at least one difference between coins and costs $eg 2 - 0.85 - 0.85$ or $1.15 - 1$ or $1.25 - 1$			
					A1 for 0.10 or 10			
					C1 ft (dep on M1) for correct statement referring to total difference units (must be given and correct)			
					(SC : B1 for correct figures with no working eg. £4.10 and £4 or 10p)			

PAPE	PAPER: 1MA0_1F									
Question		Working	Answer	Mark	Notes					
14	(a)(i)		27	2	B1 cao					
	(a)(ii)		Add 5		B1 add 5 or states rule is 5n - 3 (may be exemplified on diagram)					
	(b)		Reason	1	B1 for correct reason Eg all numbers in sequence end in 2 or 7 or continuation of sequence to beyond 45 with statement or 42, 47 with statement					
15	(a)		6	1	B1 cao					
	(b)		21	1	B1 cao					
	(c)		5	1	B1 cao					
16	(a)		10	1	B1 cao					
	(b)	$9+4 \times 5 = 9+20$	29	2	M1 for evidence of correct start to order of evaluation, 3×3 or 9 or 20 A1 cao					
	(c)		125	1	B1 cao					
	(d)		4	1	B1 accept - 4 or ±4					
17			2400	3	B1 for one of 20, 40, 3 or 300 M1 for "20"×"40"×"3" or "20"×"40"×"300") (values do not need to be rounded) A1 for answer in range 2280 – 2520 SC : Award B3 for an answer of 2400 if no working seen NB. An answer of 2416.05 implies B0 M1 A1					

PAPE	PAPER: 1MA0_1F							
Question		Working	Answer	Mark	Notes			
18	(a)(i)		$\frac{1}{6}$	2	B1 for $\frac{1}{6}$ or any equivalent fraction, percentage or decimal (rounded or truncated to 2 or more significant figures)			
	(a)(ii)		0		B1 accept $\frac{0}{6}$, 0%, zero			
	(b)		20	2	M1 for $\frac{1}{6} \times 120$ oe A1 cao (NB: An answer of $\frac{20}{120}$ scores M1 A0)			
19			£1.12	3	M1 for use of 1000 g in 1 kg eg. 1000 ÷ 200(=5) ; 200 ÷ 1000(=0.2) oe ; 20% ; 500g costs £2.80 ; 100g costs 56p M1(dep) for a fully correct method eg. 5.60 ÷ "5" (= 1.12) or 56 × 2 A1 £1.12 or 112p			
20			7	3	M1 for 4×10 or 40 or $\frac{12+6+15+x}{4}$ or a correct equation M1 for a complete correct method A1 cao			

PAPER	R: 1MA0_	_1F			
Que	estion	Working	Answer	Mark	Notes
21	(a)		А	1	B1 cao
	(b)		2	1	B1 cao
	(c)		Tessellation	2	B2 for at least 6 correct shapes, including initial shape, correctly tessellating with at least 2 points where 3 tiles meet and no incorrectly drawn tiles or gaps.(B1 for at least 4 correct shapes, including initial shape, correctly tessellating with at least one point where 3 tiles meet; ignore any additional sections attempted, gaps or incorrect shaped tiles)
22	(a)		3	1	B1 cao
	(b)		5	1	B1 cao
	(c)		18	2	M1 for "30" – "12" seen with at least one correct A1 cao
					(SC : B1 for 25 and 12 seen with an answer of 13)
23	(a)		10	1	B1 cao
	(b)		8.5	1	B1 accept $\frac{17}{2}$ or $8\frac{1}{2}$
	(c)		32	1	B1 cao
	(d)		6 + 3t	1	B1 for $6 + 3t$

PAPER: 1MA0_1F								
een in responses to this								
e given in point 7 of the marking nethod that leads to the answer								
0) or $13 - 8$ or 5 males and train								
r labeling showing at least 3 aced.								
ne diagram must be highlighted in								
(or placed on the answer line))								
s triangle are <u>equal</u>								

PAPER	PAPER: 1MA0_1F								
Question		Working	Answer	Mark	Notes				
26	(a)	(4,0) (3, 0) (3, -1) (2, -1) (2, 2) (4, 2)	Correct position	2	B2 for correct shape in correct position (B1 for any incorrect translation of correct shape)				
	(b)		Rotation 180° (0,1)	3	B1 for rotation B1 for 180° (ignore direction) B1 for (0, 1)				
					B1 for enlargement B1 for scale factor -1 B1 for (0, 1) (NB: a combination of transformations gets B0)				

PAPER	PAPER: 1MA0_1F							
Question		Working	Answer	Mark	Notes			
27			24	4	M1 for 0.15×240 oe (= 36)			
					M_{1} for $\frac{3}{240} \approx (-180)$			
					$\frac{1}{4} \frac{1}{4} = \frac{1}{4} $			
					M1 (dep on both prev M1) for 240 – "180" – "36"			
					A1 cao			
					OR			
					M1 for $15(\%) + 75(\%) (= 90(\%))$			
					M1 for $100(\%) - 90\%(\%) (= 10(\%))$			
					M1 (dep on both prev M1) for $\frac{(10, 3)}{100} \times 240$ oe			
					A1 cao			
					OR			
					$M1 \text{ for } (0.15 + 0.75 \text{ oe}(=0.9))$ $M1 \text{ for } (0.07 \times 240 \text{ oe}(=216))$			
					M1 (den on both prov. M1) for $240 = (-216)$ M1 (den on both prov. M1) for $240 = (-216)$			
					$\frac{1}{41} \frac{1}{200}$			
					Aread			
					OR			
					M1 for $0.15 + 0.75$ oe(= 0.9)			
					M1 for $1 - "0.9"$ oe $(= 0.1)$			
					M1 (dep on both prev M1) for " 0.1 " × 240 = 24			
					A1 cao			

PAPER	PAPER: 1MA0_1F							
Ques	stion	Working	Answer	Mark	Notes			
28			1.5	4	M1 for correct expression for perimeter eg. $4 + 3x + x + 6 + 4 + 3x + x + 6$ oe M1 for forming correct equation eg. $4 + 3x + x + 6 + 4 + 3x + x + 6 = 32$ oe M1 for $8x = 12$ or $12 \div 8$ A1 for 1.5 oe OR M1 for correct expression for semi-perimeter eg. $4 + 3x + x + 6$ oe M1 for forming correct equation eg. $4 + 3x + x + 6 = 16$ M1 for $4x = 6$ or $6 \div 4$ A1 for 1.5 oe			

PAPER: 1MA0_1F						
Questio	n Working	Answer	Mark	Notes		
Questio 29	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Answer $y = \frac{1}{2}x + 5$ drawn	Mark 3	Notes(Table of values / calculation of values)M1 for at least 2 correct attempts to find points by substituting values of x.M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly)A1 for correct line between $x = -2$ and $x = 4$ (No table of values)M1 for at least 2 correct points with no more than 2 incorrect pointsM1 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y = \frac{1}{2}x + 5$ drawnA1 for correct line between $x = -2$ and $x = 4$ (Use of $y=mx+c$)M1 for line drawn with gradient of 0.5 OR line drawn with a y intercept of 5M1 for line drawn with gradient of 0.5 AND with a y intercept of 5		
				SC : B2 for the correct line from $x = 0$ to $x = 4$		

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below: Angles: $\pm 5^{\circ}$ Measurements of length: ± 5 mm

PAPER: 1MA0_1F					
Question		Modification	Notes		
1	(b)	Angle $x = 115$ degrees.	Angle x is $115^{\circ} \pm 5^{\circ}$		
	(c)		10.5 ±5 mm		
3		6 caravans changed to 5	Standard mark scheme		
6		Hampton in Arden row has been removed.	Standard mark scheme		
8	(a)	2cm grid – wording changed to "a grid of squares". Each square represents a one centimetre square."	Standard mark scheme		
	(b)	2cm grid – wording added "Each square represents a one centimetre square."	Standard mark scheme		
9	(ii)	(X) removed.	Standard mark scheme		
11		Boxes removed. Information given instead.	Standard mark scheme		
13		Pictures of coins was removed.	Standard mark scheme		

PAPER: 1MA0_1F						
Ques	tion	Modification	Notes			
15		Braille only – roman numerals (i) to (iii) given as 0.5 (i) 2 15 3 (ii) (iii) 33	Standard mark scheme			
21		Size of diagram $\times 2$ – grey tiles changed to dotty shaded.	Standard mark scheme			
	(c)	and TLP	Standard mark scheme			
22	(c)	Grid – y axis- 3cm for 1; x axis 3cm for 5. Tuesday graph goes from $(0,0)$ to $(20,3)$.	Tuesday graph altered. Answer now 10 minutes M1 for '30' – '20' seen with at least one correct (SC : B1 for 25 and 20 seen with an answer of 5)			
23	(a)	MLP – x changed to y	Standard mark scheme			
25		Braille – diagram labelled A B C and additional information was given about the diagram.	Standard mark scheme			
26	(a)	2cm grid – shape P moved up two squares.	 P is in a different starting position - mark scheme remains the same B2 for correct shape in correct position (B1 for any incorrect translation of correct shape) 			
	(b)	No shading of shapes $-x$ axis -2 and -4 removed as they would obscure shape.	Standard mark scheme			
28		MLP and Braille – x changed to y	Standard mark scheme			
29		1.5 cm grid	Standard mark scheme			

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UG037221 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

