Trignometry Topic Quiz 3

CAMBRIDGE IGCSE MATHS (0580)

Paper 2 (P2): Trignometry Topic Quiz 3

Question 1:
Board Diagram Example

The diagram represents a boat race with three buoys K, L, and M.
MK = 4 km, KL = 9 km, and angle MKL = 108°.


(a) Calculate the distance ML.
Answer(a) ML = ............................................... km [4]

(b) The bearing of L from K is 125°.
(i) Calculate how far L is south of K.
Answer(b)(i) ............................................... km [3]

(ii) Find the three-figure bearing of K from M.
Answer(b)(ii) ............................................... [2]
Question 2:
Board Diagram Example

The frame of a child’s bicycle is made from metal rods. ABC is an isosceles triangle with base 22 cm and base angles 50°.
Angle ACD = 100° and CD = 31 cm.


Calculate the length AD.
Answer(c) AD = ............................................... cm [6]
Question 3:
Board Diagram Example

The diagram shows straight roads connecting the towns A, B, C, and D.
AB = 17 km, AC = 12 km, and CD = 10 km.
Angle BAC = 30° and angle ADC = 95°.


(a) Calculate angle CAD.
Answer(a) Angle CAD = ............................................... [3]

(b) Calculate the distance BC.
Answer(b) BC = ............................................... km [4]

(c) The bearing of D from A is 040°.
Find the bearing of
(i) B from A,
Answer(c)(i) ............................................... [1]
(ii) A from B.
Answer(c)(ii) ............................................... [1]

(d) Angle ACB is obtuse.
Calculate angle BCD.
Answer(d) Angle BCD = ............................................... [4]
Question 4:
Board Diagram Example

In the diagram, BCD is a straight line and ABDE is a quadrilateral.
Angle BAC = 90°, angle ABC = 30° and angle CAE = 52°.
AC = 15.7cm, CE = 16.5cm and CD = 23.4cm.


(a) Calculate BC.
Answer(a) BC = ........................................... cm [3]

(b) Use the sine rule to calculate angle AEC.
Show that it rounds to 48.57°, correct to 2 decimal places.
Answer(b) ........................................... [3]

(c) (i) Show that angle ECD = 40.6°, correct to 1 decimal place.
Answer(c)(i) ........................................... [2]

(ii) Calculate DE.
Answer(c)(ii) DE = ........................................... cm [4]

(d) Calculate the area of the quadrilateral ABDE.
Answer(d) ........................................ cm2 [4]
Question 5:
Board Diagram Example

(a) The diagram shows triangle LMN with:
  • LM = 12 cm
  • LN = 15 cm
  • MN = 21 cm

(i) Calculate angle LMN. Show that this rounds to 44.4°, correct to 1 decimal place.
Answer(a)(i): ........................................ [4]
(ii) Calculate the area of triangle LMN.
Answer(a)(ii): ........................................ cm2 [2]

Board Diagram Example

(b) The diagram shows triangle PQR with:
  • PQ = 6.4 cm
  • Angle PQR = 82°
  • Angle QPR = 43°

Calculate the length of PR.
Answer(b): PR = ......................................... cm [4]
Question 6:
(a)
Board Diagram Example
The diagram shows a circle with center O and points A, B, C, D, and E on the circle. Given:
  • Angle ABD = 27°.

Find:
  1. Angle ACD
    Answer(a)(i): Angle ACD = ............................................... [1]
  2. Angle AOD
    Answer(a)(ii): Angle AOD = ............................................... [1]
  3. Angle AED
    Answer(a)(iii): Angle AED = ............................................... [1]

Board Diagram Example
(b) The diagram shows quadrilateral KLMN with:
  • KL = 45 cm
  • LN = 32 cm
  • Angle KLN = 100°
  • Angle NLM = 67°

  1. Calculate the length KN.
    Answer(b)(i): KN = ......................................... cm [4]
  2. The area of triangle LMN is 324 cm2. Calculate the length LM.
    Answer(b)(ii): LM = ......................................... cm [3]

  3. Board Diagram Example
  4. Another triangle XYZ is mathematically similar to triangle LMN. Given:
    • XZ = 16 cm
    • The area of triangle LMN is 324 cm2.
    Calculate the area of triangle XYZ.
    Answer(b)(iii): ........................................ cm2 [2]
Question 7:

Board Diagram Example
The diagram shows a quadrilateral ABCD where:
  • Angle BAD = 49°
  • Angle ABD = 55°
  • BD = 80 m, BC = 95 m, CD = 90 m

Solve the following:
  1. Use the sine rule to calculate the length of AD.
    Answer(a): AD = ............................................ m [3]
  2. Use the cosine rule to calculate angle BCD.
    Answer(b): Angle BCD = ................................................ [4]
  3. Calculate the area of the quadrilateral ABCD.
    Answer(c): ........................................... m2 [3]
  4. The quadrilateral represents a field. Corn seeds are sown across the entire field at a cost of $3250 per hectare.
    1 hectare = 10,000 m2.
    Calculate the cost of the corn seeds used.
    Answer(d): $ ................................................ [3]
Question 8:
Board Diagram Example

A plane flies from A to C and then from C to B.
AC = 510 km, CB = 720 km.
The bearing of C from A is 135° and angle ACB = 40°.

  1. Find the bearing of:
    1. B from C:
      Answer: ................................................... [2]
    2. C from B:
      Answer: ................................................... [2]
  2. Calculate AB and show that it rounds to 464.7 km, correct to 1 decimal place.
    Answer: ................................................... [4]
  3. Calculate angle ABC.
    Answer: Angle ABC = .................................................. [3]
Question 9:

The diagram shows a field ABCDE:

Board Diagram Example

  1. Calculate the perimeter of the field ABCDE.
    Answer: ................................................ m [4]
  2. Calculate angle ABD.
    Answer: Angle ABD = .......................................................... [4]
  3. (i) Calculate angle CBD.
    Answer: Angle CBD = .................................................... [2]
    (ii) Find the bearing of D from B.
    Answer: .................................................... [2]
  4. Calculate the area of the field ABCDE.
    Give your answer in hectares (1 hectare = 10,000 m²).
    Answer: ...................................... hectares [4]
Question 10:
  1. (a) Show that each interior angle of a regular pentagon is 108°.
    Answer: ........................................ [2]

  2. Board Diagram Example
  3. The diagram shows a regular pentagon ABCDE where:
    • The vertices of the pentagon lie on a circle, center \( O \), radius \( 12 \, \text{cm} \).
    • \( M \) is the midpoint of \( BC \).
    1. Find \( BM \).
      Answer: \( BM = \) ........................................ cm [3]
    2. \( OMX \) and \( ABX \) are straight lines:
      • (a) Find \( BX \).
      • Answer: \( BX = \) ........................................ cm [3]
      • (b) Calculate the area of triangle \( AOX \).
      • Answer: ........................................ cm² [3]
Question 11:
Board Diagram Example

The diagram shows two triangles \( \triangle ABD \) and \( \triangle BCD \):

  • \( AD = 16.5 \, \text{cm} \)
  • \( BD = 12.4 \, \text{cm} \)
  • \( \angle ADB = 64^\circ \), \( \angle BDC = 53^\circ \), \( \angle DBC = 95^\circ \)
  1. (i) Find \( AB \).
    Answer: \( AB = \) ........................................ cm [4]
  2. (ii) Find \( BC \).
    Answer: \( BC = \) ........................................ cm [4]