CAMBRIDGE IGCSE MATHS (0580)
Paper 2 (P2): Trignometry Topic Quiz 3
Question 1:
The diagram represents a boat race with three buoys K, L, and M.
MK = 4 km, KL = 9 km, and angle MKL = 108°.
The diagram represents a boat race with three buoys K, L, and M.
MK = 4 km, KL = 9 km, and angle MKL = 108°.
(a) Calculate the distance ML.
Answer(a) ML = ............................................... km [4]
(b) The bearing of L from K is 125°.
(i) Calculate how far L is south of K.
Answer(b)(i) ............................................... km [3]
(ii) Find the three-figure bearing of K from M.
Answer(b)(ii) ............................................... [2]
Question 2:
The frame of a child’s bicycle is made from metal rods. ABC is an isosceles triangle with base 22 cm and base angles 50°.
Angle ACD = 100° and CD = 31 cm.
The frame of a child’s bicycle is made from metal rods. ABC is an isosceles triangle with base 22 cm and base angles 50°.
Angle ACD = 100° and CD = 31 cm.
Calculate the length AD.
Answer(c) AD = ............................................... cm [6]
Question 3:
The diagram shows straight roads connecting the towns A, B, C, and D.
AB = 17 km, AC = 12 km, and CD = 10 km.
Angle BAC = 30° and angle ADC = 95°.
The diagram shows straight roads connecting the towns A, B, C, and D.
AB = 17 km, AC = 12 km, and CD = 10 km.
Angle BAC = 30° and angle ADC = 95°.
(a) Calculate angle CAD.
Answer(a) Angle CAD = ............................................... [3]
(b) Calculate the distance BC.
Answer(b) BC = ............................................... km [4]
(c) The bearing of D from A is 040°.
Find the bearing of
(i) B from A,
Answer(c)(i) ............................................... [1]
(ii) A from B.
Answer(c)(ii) ............................................... [1]
(d) Angle ACB is obtuse.
Calculate angle BCD.
Answer(d) Angle BCD = ............................................... [4]
Question 4:
In the diagram, BCD is a straight line and ABDE is a quadrilateral.
Angle BAC = 90°, angle ABC = 30° and angle CAE = 52°.
AC = 15.7cm, CE = 16.5cm and CD = 23.4cm.
In the diagram, BCD is a straight line and ABDE is a quadrilateral.
Angle BAC = 90°, angle ABC = 30° and angle CAE = 52°.
AC = 15.7cm, CE = 16.5cm and CD = 23.4cm.
(a) Calculate BC.
Answer(a) BC = ........................................... cm [3]
(b) Use the sine rule to calculate angle AEC.
Show that it rounds to 48.57°, correct to 2 decimal places.
Answer(b) ........................................... [3]
(c) (i) Show that angle ECD = 40.6°, correct to 1 decimal place.
Answer(c)(i) ........................................... [2]
(ii) Calculate DE.
Answer(c)(ii) DE = ........................................... cm [4]
(d) Calculate the area of the quadrilateral ABDE.
Answer(d) ........................................ cm2 [4]
Question 5:
(a) The diagram shows triangle LMN with:
(i) Calculate angle LMN. Show that this rounds to 44.4°, correct to 1 decimal place.
Answer(a)(i): ........................................ [4]
(ii) Calculate the area of triangle LMN.
Answer(a)(ii): ........................................ cm2 [2]
(a) The diagram shows triangle LMN with:
- LM = 12 cm
- LN = 15 cm
- MN = 21 cm
(i) Calculate angle LMN. Show that this rounds to 44.4°, correct to 1 decimal place.
Answer(a)(i): ........................................ [4]
(ii) Calculate the area of triangle LMN.
Answer(a)(ii): ........................................ cm2 [2]
(b) The diagram shows triangle PQR with:
- PQ = 6.4 cm
- Angle PQR = 82°
- Angle QPR = 43°
Calculate the length of PR.
Answer(b): PR = ......................................... cm [4]
Question 6:
(a)
The diagram shows a circle with center O and points A, B, C, D, and E on the circle. Given:
Find:
(a)
The diagram shows a circle with center O and points A, B, C, D, and E on the circle. Given:
- Angle ABD = 27°.
Find:
- Angle ACD
Answer(a)(i): Angle ACD = ............................................... [1] - Angle AOD
Answer(a)(ii): Angle AOD = ............................................... [1] - Angle AED
Answer(a)(iii): Angle AED = ............................................... [1]
(b) The diagram shows quadrilateral KLMN with:
- KL = 45 cm
- LN = 32 cm
- Angle KLN = 100°
- Angle NLM = 67°
- Calculate the length KN.
Answer(b)(i): KN = ......................................... cm [4] - The area of triangle LMN is 324 cm2. Calculate the length LM.
Answer(b)(ii): LM = ......................................... cm [3] - Another triangle XYZ is mathematically similar to triangle LMN. Given:
- XZ = 16 cm
- The area of triangle LMN is 324 cm2.
Answer(b)(iii): ........................................ cm2 [2]
Question 7:
The diagram shows a quadrilateral ABCD where:
Solve the following:
The diagram shows a quadrilateral ABCD where:
- Angle BAD = 49°
- Angle ABD = 55°
- BD = 80 m, BC = 95 m, CD = 90 m
Solve the following:
- Use the sine rule to calculate the length of AD.
Answer(a): AD = ............................................ m [3] - Use the cosine rule to calculate angle BCD.
Answer(b): Angle BCD = ................................................ [4] - Calculate the area of the quadrilateral ABCD.
Answer(c): ........................................... m2 [3] - The quadrilateral represents a field. Corn seeds are sown across the entire field at a cost of $3250 per hectare.
1 hectare = 10,000 m2.
Calculate the cost of the corn seeds used.
Answer(d): $ ................................................ [3]
Question 8:
A plane flies from A to C and then from C to B.
AC = 510 km, CB = 720 km.
The bearing of C from A is 135° and angle ACB = 40°.
- Find the bearing of:
- B from C:
Answer: ................................................... [2] - C from B:
Answer: ................................................... [2]
- B from C:
- Calculate AB and show that it rounds to 464.7 km, correct to 1 decimal place.
Answer: ................................................... [4] - Calculate angle ABC.
Answer: Angle ABC = .................................................. [3]
Question 9:
The diagram shows a field ABCDE:
- Calculate the perimeter of the field ABCDE.
Answer: ................................................ m [4] - Calculate angle ABD.
Answer: Angle ABD = .......................................................... [4] - (i) Calculate angle CBD.
Answer: Angle CBD = .................................................... [2]
(ii) Find the bearing of D from B.
Answer: .................................................... [2] - Calculate the area of the field ABCDE.
Give your answer in hectares (1 hectare = 10,000 m²).
Answer: ...................................... hectares [4]
Question 10:
- (a) Show that each interior angle of a regular pentagon is 108°.
Answer: ........................................ [2] - The diagram shows a regular pentagon ABCDE where:
- The vertices of the pentagon lie on a circle, center \( O \), radius \( 12 \, \text{cm} \).
- \( M \) is the midpoint of \( BC \).
- Find \( BM \).
Answer: \( BM = \) ........................................ cm [3] - \( OMX \) and \( ABX \) are straight lines:
- (a) Find \( BX \).
- Answer: \( BX = \) ........................................ cm [3]
- (b) Calculate the area of triangle \( AOX \).
- Answer: ........................................ cm² [3]
Question 11:
The diagram shows two triangles \( \triangle ABD \) and \( \triangle BCD \):
- \( AD = 16.5 \, \text{cm} \)
- \( BD = 12.4 \, \text{cm} \)
- \( \angle ADB = 64^\circ \), \( \angle BDC = 53^\circ \), \( \angle DBC = 95^\circ \)
- (i) Find \( AB \).
Answer: \( AB = \) ........................................ cm [4] - (ii) Find \( BC \).
Answer: \( BC = \) ........................................ cm [4]
Solution