CAMBRIDGE IGCSE MATHS (0580)
Paper 2 (P2): Trignometry Topic Quiz 2
Question 1:
The diagram represents a field in the shape of a quadrilateral ABCD.
AB = 32m, BC = 43m and AC = 64m.
The diagram represents a field in the shape of a quadrilateral ABCD.
AB = 32m, BC = 43m and AC = 64m.
(a) (i) Show clearly that angle CAB = 37.0° correct to one decimal place.
Answer(a)(i) ............................................... [4]
(ii) Calculate the area of the triangle ABC.
Answer(a)(ii) ............................................... m2 [2]
(b) CD = 70m and angle DAC = 55°.
Calculate the perimeter of the whole field ABCD.
Answer(b) ............................................... m [6]
Question 2:
The area of triangle ABC is 130 cm2.
AB = 16 cm and BC = 25 cm.
The area of triangle ABC is 130 cm2.
AB = 16 cm and BC = 25 cm.
(a) Show clearly that angle ABC = 40.5°, correct to one decimal place.
Answer(a) ............................................... [3]
(b) Calculate the length of AC.
Answer(b) AC = ............................................... cm [4]
(c) Calculate the shortest distance from A to BC.
Answer(c) ............................................... cm [2]
Question 3:
The diagram shows a school playground ABCD.
ABCD is a trapezium.
AB = 55m, BD = 70m, angle ABD = 40° and angle BCD = 32°.
The diagram shows a school playground ABCD.
ABCD is a trapezium.
AB = 55m, BD = 70m, angle ABD = 40° and angle BCD = 32°.
(a) Calculate AD.
Answer(a) AD = ............................................... m [4]
(b) Calculate BC.
Answer(b) BC = ............................................... m [4]
(c) (i) Calculate the area of the playground ABCD.
Answer(c)(i) ............................................... m2 [3]
(ii) An accurate plan of the school playground is to be drawn to a scale of 1:200.
Calculate the area of the school playground on the plan.
Give your answer in cm2.
Answer(c)(ii) ............................................... cm2 [2]
(d) A fence, BD, divides the playground into two areas.
Calculate the shortest distance from A to BD.
Answer(d) ............................................... m [2]
Question 4:
The diagram shows the cross-section, ABCD, of a ramp.
The diagram shows the cross-section, ABCD, of a ramp.
(a) Calculate angle DBC.
Answer(a) Angle DBC = ............................................... [2]
(b) (i) Show that BD is exactly 3m.
Answer(b)(i) ............................................... [2]
(ii) Use the cosine rule to calculate angle ABD.
Answer(b)(ii) Angle ABD = ............................................... [4]
(c) The ramp is a prism of width 4m.
Calculate the volume of this prism.
Answer(c) ............................................... m3 [3]
Question 5:
A field, ABCD, is in the shape of a quadrilateral. A footpath crosses the field from A to C.
A field, ABCD, is in the shape of a quadrilateral. A footpath crosses the field from A to C.
(a) Use the sine rule to calculate the distance AC and show that it rounds to 119.9m, correct to 1 decimal place.
Answer(a) ............................................... [3]
(b) Calculate the length of BC.
Answer(b) BC = ........................................... m [4]
(c) Calculate the area of triangle ACD.
Answer(c) .......................................... m2 [2]
(d) The field is for sale at $4.50 per square metre. Calculate the cost of the field.
Answer(d) $ ............................................... [3]
Question 6:
(a) ABCD is a trapezium.
(a) ABCD is a trapezium.
(i) Calculate the length of AD.
Answer(a)(i) AD = .......................................... cm [2]
(ii) Calculate the size of angle BCD.
Answer(a)(ii) Angle BCD = ................................................ [3]
(iii) Calculate the area of the trapezium ABCD.
Answer(a)(iii) ......................................... cm2 [2]
(b) A similar trapezium has a perpendicular height of 9.4cm. Calculate the area of this trapezium.
Answer(b) ......................................... cm2 [3]
Question 7:
A, B, C, and D are points on a circle, center O. CE is a tangent to the circle at C.
A, B, C, and D are points on a circle, center O. CE is a tangent to the circle at C.
(a) Find the sizes of the following angles and give a reason for each answer.
(i) Angle DAC = ..................... because ..........................................................................................
..................................................................................................................................................... [2]
(ii) Angle DOC = ..................... because .........................................................................................
..................................................................................................................................................... [2]
(iii) Angle BCO = ..................... because ..........................................................................................
..................................................................................................................................................... [2]
(b) CE = 8.9cm and CB = 7cm.
(i) Calculate the length of BE.
Answer(b)(i) BE = .......................................... cm [4]
(ii) Calculate angle BEC.
Answer(b)(ii) Angle BEC = ................................................ [3]
Question 8:
The diagram shows some distances between Mumbai (M), Kathmandu (K), Dhaka (D), and Colombo (C).
The diagram shows some distances between Mumbai (M), Kathmandu (K), Dhaka (D), and Colombo (C).
(a) Angle CKD = 65°.
Use the cosine rule to calculate the distance CD.
Answer(a) CD = .......................................... km [4]
(b) Angle MKC = 40°.
Use the sine rule to calculate the acute angle KMC.
Answer(b) Angle KMC = ................................................ [3]
(c) The bearing of K from M is 050°.
Find the bearing of M from C.
Answer(c) ................................................ [2]
(d) A plane from Colombo to Mumbai leaves at 21:15, and the journey takes 2 hours 24 minutes.
(i) Find the time the plane arrives at Mumbai.
Answer(d)(i) ................................................ [1]
(ii) Calculate the average speed of the plane.
Answer(d)(ii) ....................................... km/h [2]
Question 9:
The diagram shows a field, ABCD.
AD = 180 m and AC = 240 m.
Angle ABC = 50° and angle ACB = 85°.
The diagram shows a field, ABCD.
AD = 180 m and AC = 240 m.
Angle ABC = 50° and angle ACB = 85°.
(a) Use the sine rule to calculate AB.
Answer(a) AB = ............................................ m [3]
(b) The area of triangle ACD = 12,000 m².
Show that angle CAD = 33.75°, correct to 2 decimal places.
Answer(b) ................................................ [3]
(c) Calculate BD.
Answer(c) BD = ............................................ m [5]
(d) The bearing of D from A is 030°.
Find the bearing of:
(i) B from A
Answer(d)(i) ................................................. [1]
(ii) A from B
Answer(d)(ii) ................................................. [2]
Question 10:
The diagram shows a quadrilateral ABCD.
The diagram shows a quadrilateral ABCD.
(a) The length of AC is x cm. Use the cosine rule in triangle ABC to show that:
2x² – 17x – 168 = 0.
Answer(a) ............................................. [4]
(b) Solve the equation 2x² – 17x – 168 = 0.
Show all your working and give your answers correct to 2 decimal places.
x = ............................................. or x = ............................................. [4]
(c) Use the sine rule to calculate the length of CD.
Answer(c) CD = .......................................... cm [3]
(d) Calculate the area of the quadrilateral ABCD.
Answer(d) .......................................... cm² [3]
Question 11:
(a) The diagram shows triangle PQR.
The angle 130.6°, side 8.9 cm, and side 12.5 cm are given.
Calculate the area of triangle PQR.
Answer(a) ........................................ cm² [2]
(a) The diagram shows triangle PQR.
The angle 130.6°, side 8.9 cm, and side 12.5 cm are given.
Calculate the area of triangle PQR.
Answer(a) ........................................ cm² [2]
(b) The diagram shows quadrilateral ABCD.
Given: AB = 18 cm, BC = 21.3 cm, BD = 11.6 cm, and angle BDC = 123.5°.
Angle ABC is a right angle.
(i) Calculate angle BCD.
Answer(b)(i) Angle BCD = ........................................ [3]
(ii) Calculate AD.
Answer(b)(ii) AD = ......................................... cm [5]
Question 12:
(a) Calculate angle ACB.
Answer(a) Angle ACB = ................................................. [4]
(a) Calculate angle ACB.
Answer(a) Angle ACB = ................................................. [4]
(b) Calculate angle ACD.
Answer(b) Angle ACD = .................................................. [4]
(c) Calculate the area of the quadrilateral ABCD.
Answer(c) Area of ABCD = ........................................... cm² [3]
Solution